The Drive & Control Company



# Ball Rail Systems BSCL

Ball Runner Blocks, Ball Guide Rails, accessories



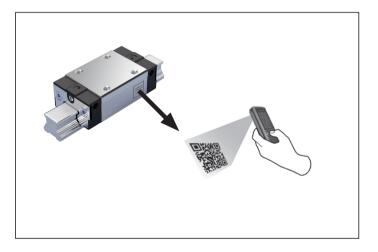
# The Ball Rail System Compact Line BSCL

The new Ball Rail System BSCL (Ball Rail Systems Compact Line) complements the existing linear guide program and provides application-specific performance for the middle performance and price segments. Its performance data fulfills the demands of standard tasks and complements the high-precision BSHP series.

BSCL Ball Guide Rails are available in six sizes, six Runner Block types, three preload classes and three accuracy classes (N, H, P).

Also with this series, rails and Runner Blocks in the respective sizes can be combined and delivered worldwide in the shortest time from stock. A peculiarity of the BSCL linear guides: Guide Rails can be shortened to the desired length using simple tools, without the need for costly end machining.

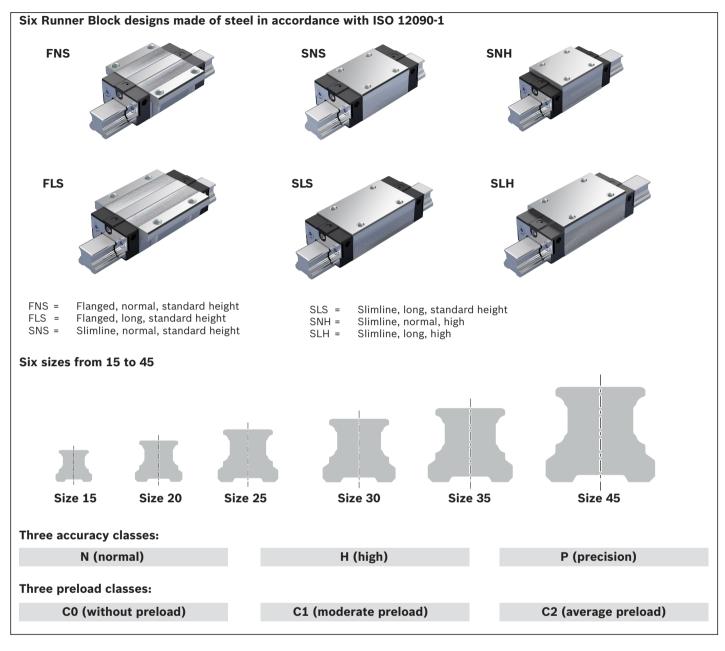
With a new structural design and significantly lower material use, Rexroth has achieved an outstanding application-oriented price-performance ratio.


Connection elements are available for special ambient conditions.

With the expanded product portfolio, Bosch Rexroth can cover all requirements economically.

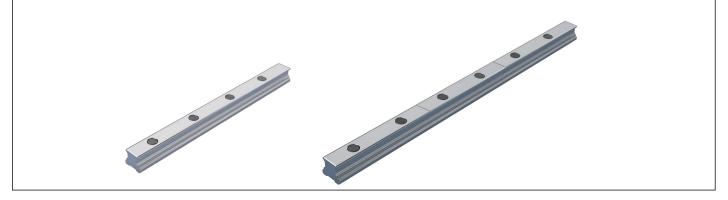
### Advanced product information on the Ball Rail System BSCL using the QR code:

In addition to the material number, a QR code can also be found on the BSCL Runner Block. This leads to further product descriptions and enables the user to call up extensive information on the product. This includes the instructions and the catalog, which contains all technical information.


A connection to the eShop, the short product name for the Runner Block as well as the production plant and the production date are in preparation.



# Contents


| At a glance                                        | 4        |
|----------------------------------------------------|----------|
| General product information                        | 4        |
| Product description                                | 5        |
| Ball Runner Block designs                          | 6        |
| Ball Runner Blocks with load ratings and load mome | ents 6   |
| Ball Runner Block accessories                      | 7        |
| Ball Guide Rails                                   | 7        |
| Notes                                              | 8        |
| Selection of a linear guide acc. to DIN 637        | 10       |
| General technical data and calculations            | 12       |
| System preload                                     | 20       |
| Accuracy classes                                   | 22       |
| Ball Runner Block made of steel                    | 24       |
| Ball Runner Block ordering example                 | 24       |
| FNS – flanged, normal, standard height – R205A     | 26       |
| FLS – flanged, long, standard height – R205B       | 28       |
| SNS – slimline, normal, standard height – R205C    | 30       |
| SLS – slimline, long, standard height – R205D      | 32       |
| SNH – slimline, normal, high – R205E               | 34       |
| SLH – slimline, long, high – R205F                 | 36       |
| Ball Guide Rails made of steel                     | 38       |
| Ball Guide Rail ordering example                   | 38       |
| SNS – with plastic mounting hole plugs – R2055     | 40       |
| Accessories for Ball Runner Blocks and Ball Guide  | Rails42  |
| Overview – accessories                             | 42       |
| Cover plate wiper                                  | 43       |
| Front seal                                         | 44       |
| Seal kit                                           | 45       |
| Front Lube Units                                   | 46       |
| Lubrication adapter                                | 49       |
| Lube nipple, lube fittings                         | 50       |
| Plastic mounting hole plugs                        | 53       |
| Mounting instructions, Ball Runner Blocks and Ba   | ll Guide |
| Rails                                              | 54       |
| General mounting instructions                      | 54       |
| Installation tolerances                            | 55       |
| Composite Ball Guide Rails                         | 57       |
| Mounting                                           | 60       |
| Lubrication                                        | 64       |
| Notes on lubrication                               | 64       |
| Lubricants                                         | 66       |
|                                                    |          |
| Initial lubrication and relubrication              | 67       |

### At a glance



### Guide Rails for mounting from above with plastic mounting hole plugs:

BSCL Ball Guide Rails can be supplied as factory lengths or cut-to-size either in one or more parts (detailed descriptions can be found in the chapter "Ball Guide Rails").



# Product description

### TOP logistics thanks to interchangeability and Ball Guide Rails in factory lengths

- Ball Guide Rails and Ball Runner Blocks are precisely manufactured in the ball raceway sector to allow Runner Blocks and Ball Guide Rails of the same size to be combined not only within but also beyond the respective accuracy class
- Ball Guide Rails can be ordered in factory lengths and shortened to the desired length without costly end machining, also at the customer's location
- A market-oriented product portfolio and the interchangeability of Ball Guide Rails and Ball Runner Blocks allow deliveries to be made on time from stock

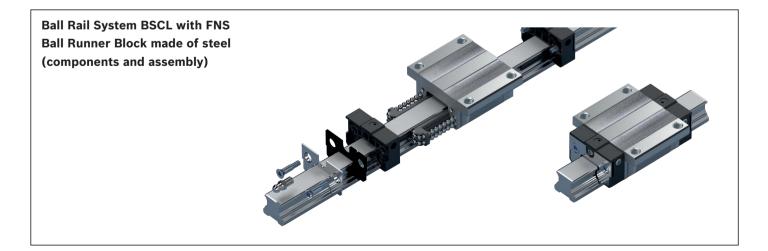
### O-arrangement of the raceways

- ▶ 4-row Profiled Rail System in O-arrangement. Low amount of friction due to 2-point rolling contact
- ▶ The same high load ratings in all four main directions of loading
- High torque capacity and torsional moment compared to an X-array
- ▶ High degree of system rigidity and accuracy, optionally available with zero-clearance pre-tensioning

### Patented entry-zone geometry and optimized deflection

- ► Lowest frictional oscillation in connection with low friction force
- Improved travel accuracy

### Integrated lubrication and sealing


- ▶ Relubricatable on all sides with 8 connections, lubricating elements in M4 (sizes 15 and 20) and M6 (sizes 25 45)
- ▶ Ball Runner Blocks are prelubricated at the factory
- Lubrication with grease, liquid grease and oil possible
- Integrated all-round sealing by means of end seals and longitudinal seals

### Range of accessories:

▶ Front seal, Front Lube Unit and cover plate wiper

### **Technical data**

- Load ratings: C<sub>50</sub> from 11,500 to 99,800 N C<sub>0</sub> from 11,700 to 120,000 N
- ► Speeds up to 3 m/s
- ► Acceleration up to 250 m/s<sup>2</sup>



### Ball Runner Block designs

|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Application area                                                                   | Load-bearing capacity | Special feature                      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------|--------------------------------------|
| FNS<br>R205A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For normal rigidity requirements                                                   | High                  | For mounting from above<br>and below |
| FLS<br>R205B |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For high rigidity requirements                                                     | Very high             | For mounting from above<br>and below |
| SNS<br>R205C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For restricted space in the transverse direction                                   | High                  | For mounting from above              |
| SLS<br>R205D | and the second s | For restricted space in the transverse direction and high rigidity requirements    | Very high             | For mounting from above              |
| SNH<br>R205E |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For restricted space in the transverse<br>direction and high rigidity requirements | High                  | Higher rigidity than SNS             |
| SLH<br>R205F |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For restricted space in the transverse direction and high rigidity requirements    | Very high             | Higher rigidity than SLS             |

### Ball Runner Blocks with load ratings and load moments

|       |                                                                                                                | Size                            | 15     | 20     | 25     | 30     | 35     | 45      |
|-------|----------------------------------------------------------------------------------------------------------------|---------------------------------|--------|--------|--------|--------|--------|---------|
| FNS   |                                                                                                                | C <sub>50</sub> <sup>2)</sup>   | 11,500 | 18,400 | 27,500 | 39,300 | 54,100 | 78,100  |
| R205A |                                                                                                                | C <sub>100</sub> <sup>1)</sup>  | 9,100  | 14,600 | 21,800 | 31,200 | 42,900 | 62,000  |
|       |                                                                                                                | Co                              | 11,700 | 19,600 | 30,600 | 42,200 | 56,600 | 83,000  |
| SNS   | <u>^</u>                                                                                                       | M <sub>t50</sub> <sup>2)</sup>  | 98     | 190    | 340    | 590    | 970    | 1,790   |
| R205C |                                                                                                                | M <sub>t100</sub> <sup>1)</sup> | 78     | 150    | 270    | 470    | 770    | 1,420   |
|       | State -                                                                                                        | M <sub>t0</sub>                 | 100    | 210    | 380    | 640    | 1,030  | 1,930   |
| SNH   |                                                                                                                | M <sub>L50</sub> <sup>2)</sup>  | 79     | 160    | 280    | 450    | 720    | 1,320   |
| R205E |                                                                                                                | M <sub>L100</sub> <sup>1)</sup> | 63     | 130    | 220    | 360    | 570    | 1,050   |
|       | Caral Caral                                                                                                    | M <sub>LO</sub>                 | 82     | 170    | 310    | 490    | 760    | 1,420   |
| FLS   | 1 × ×                                                                                                          | C <sub>50</sub> <sup>2)</sup>   | 14,500 | 22,800 | 35,300 | 49,100 | 69,300 | 99,800  |
| R205B |                                                                                                                | C <sub>100</sub> <sup>1)</sup>  | 11,500 | 18,100 | 28,000 | 39,000 | 55,000 | 79,200  |
|       | Co of the second se | Co                              | 16,800 | 27,100 | 44,200 | 58,800 | 81,600 | 120,000 |
| SLS   |                                                                                                                | M <sub>t50</sub> <sup>2)</sup>  | 130    | 240    | 440    | 740    | 1,260  | 2,320   |
| R205D |                                                                                                                | M <sub>t100</sub> <sup>1)</sup> | 100    | 190    | 350    | 590    | 1,000  | 1,840   |
|       | A Share                                                                                                        | M <sub>t0</sub>                 | 150    | 290    | 550    | 890    | 1,480  | 2,780   |
| SLH   |                                                                                                                | M <sub>L50</sub> <sup>2)</sup>  | 140    | 260    | 490    | 770    | 1,300  | 2,380   |
| R205F |                                                                                                                | M <sub>L100</sub> <sup>1)</sup> | 110    | 210    | 390    | 610    | 1,030  | 1,890   |
|       | ¥                                                                                                              | M <sub>LO</sub>                 | 160    | 320    | 620    | 920    | 1,530  | 2,860   |

1) Determination of the dynamic load capacities and load moments is based on a travel life of 100,000 m according to DIN ISO 14728-1.

2) The determination of the dynamic load capacity and load moments is based on a 50,000 m travel life according to DIN ISO 14728-1. See the chapter "General technical data and calculations" for the definition of the formula symbols

### Ball Runner Block accessories

Connection elements are additionally available as options for the Ball Runner Blocks.

|                     | Application area                                                                                                                                                                                                                                                                                               |         |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Cover plate wiper   | The cover plate wiper is used as an additional element to strip off any accumulated coarse of swarf or in the event of solidified dirt on the Ball Guide Rail.                                                                                                                                                 | lirt or |
| Front seal          | Front seals provide effective protection for the Ball Runner Block, preventing fine dirt or met particles, as well as coolant or cutting fluid from working their way in.           This means that the sealing effect is improved even more.                                                                  | tal     |
| Seal kit            | When using cover plate wiper and front seal simultaneously, the seal kit is recommended.                                                                                                                                                                                                                       |         |
| Front Lube Unit     | When very frequent relubrication is required, Front Lube Units allow travel distances<br>of up to 5,000 km without relubrication under normal loads. The function is only<br>assured where there is no exposure to liquids and little contamination.<br>The maximum permissible operating temperature is 60°C. |         |
| Lubrication adapter | For oil and grease lubrication from above for SNH and SLH Ball Runner Blocks (high version:                                                                                                                                                                                                                    | 5).     |

### Ball Guide Rails

BSCL Ball Guide Rails can be supplied as factory lengths or Ball Guide Rails cut-to-size (desired customer length).

| <b>Ball Guide Rail KSESNS; R2055</b><br>Standard Ball Guide Rail made of steel,<br>for mounting from above,<br>with plastic mounting hole plugs | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Factory lengths                                                                                                                                 | Factory lengths are Guide Rails without end machining which are only available in four-meter sections. A factory length has an overall length of approx. 4,150 mm with a usable length (good length) of at least 3,600 mm in one piece of the respective accuracy class. The maximum good length is 4,150 mm. The good length is specified on the packaging and charged upon delivery. The plastic mounting hole plugs used to seal the mounting holes must be ordered separately. The factory lengths can be cut to the desired length by the user. You can obtain information in this respect from your sales partner and your local Bosch Rexroth sales companies. |
| Desired customer length                                                                                                                         | BSCL Ball Guide Rails can be cut before delivery.<br>The maximum lengths for a one-piece rail section can be found in the "Ball Guide Rails" section.<br>If longer rails are required, Bosch Rexroth will supply them as multi-piece Ball Guide Rails.<br>The plastic mounting hole plugs used to seal the mounting holes belong to the scope of delivery.                                                                                                                                                                                                                                                                                                            |

### Notes

### General notes

Combining different accuracy classes When you combine Ball Guide Rails and Ball Runner Blocks of different accuracy classes, the tolerances change for dimensions H and A3. See "Accuracy classes and their tolerances."

### Intended Use

- The Ball Rail Systems are linear guideways capable of absorbing forces from all transverse directions and moments about all axes. The Ball Rail System is intended exclusively for guiding and positioning tasks when installed in a machine.
- The product is intended exclusively for professional use and not for private use.
- ► Use for the intended purpose also includes the requirement that users must have read and understood the related documentation completely, in particular the "Safety Instructions".

### Misuse

Use of the product in any other way than as described under "Intended Use" is considered to be misuse and is therefore not permitted. If unsuitable products are installed or used in safety-critical applications, this may lead to uncontrolled operating statuses in the application which can cause personal injury and/or damage to property.

The product may only be used in safety-critical applications if this use has been expressly specified and permitted in the product documentation.

Bosch Rexroth AG will not accept any liability for injury or damage caused by misuse of the product. The risks associated with any misuse of the product shall be borne by the user alone.

Misuse of the product includes:

the transport of persons

### General Safety Instructions

- ▶ The safety rules and regulations of the country in which the product is used must be observed.
- ► All current and applicable accident prevention and environmental regulations must be adhered to.
- The product may only be used when it is in technically perfect condition.
- ► The technical data and environmental conditions stated in the product documentation must be complied with.
- The product must not be put into service until it has been verified that the final product (for example a machine or system) into which the product has been installed complies with the country-specific requirements, safety regulations and standards for the application.
- Rexroth Ball Rail Systems may not be used in zones with potentially explosive atmospheres as defined in ATEX directive 94/9/EC.
- Rexroth Ball Rail Systems must never be altered or modified. The user may only perform the work described in the "Quick User Guide" or "Instructions for Profiled Rail Systems".
- The product is never allowed to be disassembled.
- ► At high travel speeds a certain amount of noise is caused by the product. If necessary, appropriate measures should be taken to protect hearing.
- ► The special safety requirements for specific sectors (e.g. crane construction, theaters, food technology) set forth in laws, directives and standards must be complied with.
- In all cases, the provisions of the following standard should be noted and followed. DIN 637, Safety regulations for dimensioning and operation of Profiled Rail Systems with recirculating rolling elements.

### Directives and standards

Rexroth BHSP Ball Rail Systems are suitable for dynamic linear applications requiring reliability and precision. The machine tool industry and other sectors must observe a series of standards and directives. These requirements can vary significantly worldwide. It is therefore essential to understand the legislation and standards that apply in each particular region.

### DIN EN ISO 12100

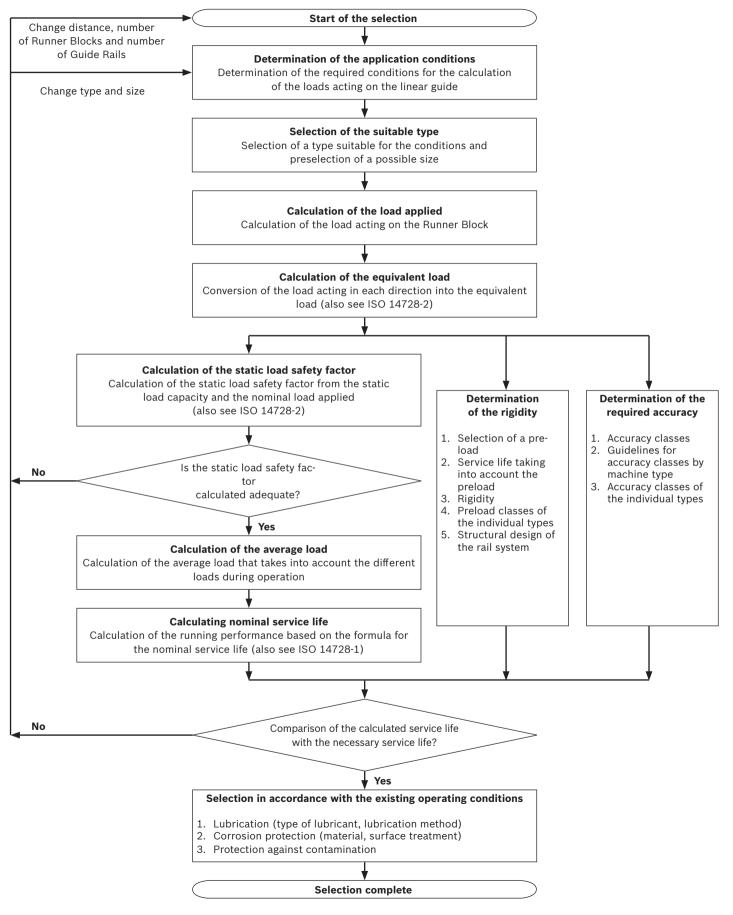
This standard describes the safety of machinery – general principles for design, risk assessment and risk reduction. It gives a general overview and contains a guide to the major developments governing machines and their intended use.

### Directive 2006/42/EC

The European Machinery Directive describes the basic safety and health requirements for the design and manufacture of machinery. The manufacturer of a machine or his authorized representative has a duty to ensure that a risk assessment has been performed in order to determine the health and safety requirements which have to be fulfilled for that machine. The machine must be designed and built taking into account the results of the risk assessment.

### Directive 2001/95/EC

This directive covers general safety requirements for any product placed on the market and intended for consumers, or likely to be used by consumers under reasonably foreseeable conditions, including products that are made available to consumers in the context of service provision for use by them

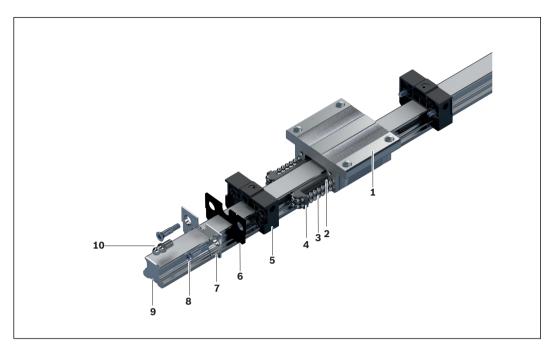

### Directive 85/374/EEC

This directive concerns the liability for defective products and applies to industrially manufactured movable objects, irrespective of whether or not they have been incorporated into another movable or immovable object.

### REGULATION (EC) No. 1907/2006 (REACH)

This regulation relates to restrictions on the marketing and use of certain dangerous substances and preparations. "Substances" means chemical elements and their compounds as they occur in the natural state or as produced by industry. "Preparations" means mixtures or solutions composed of two or more substances.

# Selection of a linear guide acc. to DIN 637




### General technical data and calculations

| General notes                                      | The general technical data and calculations apply to all Ball Rail Systems BSCL. This means to all Ball Runner Blocks and Ball Guide Rails. Specific technical data relating to the individ-<br>ual Ball Runner Blocks and Ball Guide Rails is given separately.                                                                                                                                                                                                                                                                            |                                                                                                                                                   |  |  |  |  |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Load capacity definition<br>based on 50 and 100 km | The definition of the load rating is based on a nominal service life of $10^5$ m = 100 km in<br>the European region, whereas a load carrier definition based on a service life of 50 km<br>has become prevalent in the Asian region. The conversion factor between both values is<br>$C_{50} = 1.26 \times C_{100}$ . Both values for the dynamic load ratings and load moments (which can<br>be told by the index) are specified in this catalog.<br>The following calculation chapter is based on the carrier load definition $C_{100}$ . |                                                                                                                                                   |  |  |  |  |
| Travel speed                                       | v <sub>max</sub> : 3 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                   |  |  |  |  |
| Acceleration                                       | a <sub>max</sub> : 250 m/s <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | If preload force $F_{pr}$ is canceled, $a_{max} = 50 \text{ m/s}^2$ applies<br>(If $F_{comb} > 2.8 \cdot F_{pr}$ : $a_{max} = 50 \text{ m/s}^2$ ) |  |  |  |  |
| Operating temperature<br>range                     | t : -10 to 80 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Up to 100°C is allowed for a short time.                                                                                                          |  |  |  |  |
| Friction                                           | μ: 0.002 - 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Friction coefficient $\boldsymbol{\mu}$ without seal friction                                                                                     |  |  |  |  |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |  |  |  |  |
|                                                    | 2-point contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-point contact                                                                                                                                   |  |  |  |  |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | th four rows of balls, there are always <b>two points of contact</b><br>g. This reduces the friction to a minimum.                                |  |  |  |  |

Other Ball Rail Systems with two or four rows of balls with **four points of contact** have multiple friction: the Gothic raceway profile causes higher friction due to the differential slip with lateral loading with a comparable preload without load (up to five times the friction coefficient depending on the raceway curvature and the load). This high friction leads correspondingly to greater heat.





| ltem | Part                   | Material                         |
|------|------------------------|----------------------------------|
| 1    | Ball Runner Block body | Steel                            |
| 2    | Steel bearing plate    | Anti-friction bearing steel      |
| 3    | Balls                  | Anti-friction bearing steel      |
| 4    | Frame                  | Plastic TEE-E                    |
| 5    | Ball guide             | Plastic POM                      |
| 6    | Sealing plate          | Elastomer NBR                    |
| 7    | Front panel            | Corrosion-resistant steel 1.4306 |
| 8    | Countersunk screws     | Galvanized carbon steel          |
| 9    | Ball Guide Rail        | Heat-treated steel               |
| 10   | Lube nipple            | Galvanized carbon steel          |

# General technical data and calculations

How to select a linear guide according to DIN 637 is described on page 10. The necessary calculations are explained in the following chapter. They are integrated in the "Linear Motion Designer" calculation program.

### Forces and moments

In Rexroth Ball Rail Systems the raceways are arranged at a pressure angle of 45°. This results in the same high load capacity of the entire system in all four main directions of loading.

The Ball Runner Blocks may be subjected to both forces and load moments.

### Forces in the main directions of loading

- Tension F<sub>z</sub> (positive z-direction)
- Pressure -F<sub>z</sub> (negative z-direction)
- Side load F<sub>v</sub> (positive y-direction)
- Side load -F<sub>v</sub> (negative y-direction)

### Moments

- Torsional moment M<sub>x</sub> (around the y-axis)
- Longitudinal moment M<sub>y</sub> (around the y-axis)
- Longitudinal moment M<sub>z</sub> (around the z-axis)

### **Definition of load capacities**

### Dynamic load capacity C<sub>100</sub>

The radial load (whose extent and direction does not change) that a linear anti-friction bearing can theoretically absorb for a nominal life covering 10<sup>5</sup> m (according to DIN ISO 14728-1).

Note: The dynamic load capacities in the tables are above the DIN or ISO values. These values have been confirmed in tests.

### Static load rating C<sub>0</sub>

Static load in the load direction that corresponds to a calculated load in the center of the contact point with the greatest load between the ball and raceway of 4200 MPa.

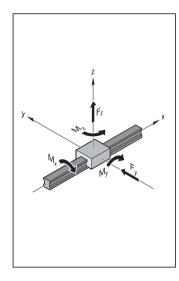
Note: With this stress at the contact point, permanent overall deformation of the ball and raceway occurs that corresponds to about 0.0001 times the ball diameter. (according to DIN ISO 14728-1).

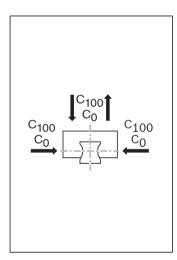
### **Definition of moment load capacities**

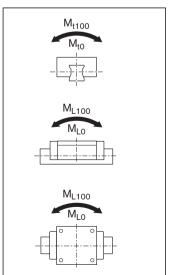
### Dynamic torsional moment load capacity $M_{t100}$

Comparative dynamic moment about the x-axis which causes a load equivalent to the dynamic load capacity  $C_{100}$ .

### Static torsional moment load capacity M<sub>to</sub>


The comparable static moment around the x-axis that induces a load corresponding to the static load capacity  $C_0$ .


### Dynamic longitudinal moment load capacity $M_{L100}$


The dynamic comparable dynamic moment around the transverse axis y or the vertical axis z that induces a load corresponding to the dynamic load capacity  $C_{100}$ .

### Static longitudinal moment load capacity ML0

The static comparable dynamic moment around the transverse axis y or the vertical axis z that induces a load corresponding to the static load capacity  $C_0$ .





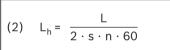


### Definition and calculation of the nominal service life

Nominal life in meters

The calculated service life which an individual linear rolling bearing, or a group of apparently identical rolling element bearings operating under the same conditions, can attain with a 90% probability, with contemporary, commonly used materials and manufacturing quality under conventional operating conditions (as per ISO 14728-1).

(1) L = 
$$\left(\frac{C_{100}}{f_{w} \cdot F_{m}}\right)^{3} \cdot 10^{5} \text{ m}$$


Due to impact loads and vibration, additional stress is placed on the point of contact between ball and raceway. It is difficult to accurately determine these conditions of use. However, these increase with increasing travel speed. The load factor  $f_w$  (see table) takes into account the effects of shock and vibration on the service life of the BSCL.

| Conditions of use                    | Travel speed             | Load factor f <sub>w</sub> |
|--------------------------------------|--------------------------|----------------------------|
| No impact loads and vibrations       | v < 15 m/min             | 1.0 1.2                    |
| Low impact loads and vibrations      | 15 m/min ≤ v < 60 m/min  | 1.2 1.5                    |
| Moderate impact loads and vibrations | 60 m/min ≤ v < 120 m/min | 1.5 2.0                    |
| High impact loads and vibrations     | v ≥ 120 m/min            | 2.0 3.5                    |

### Service life in operating hours with constant stroke and constant stroke repetition rate

Nominal life at variable speed

**Modified service life** 



If the stroke length s and the stroke repetition rate n are constant over the entire service life, you can use formula (2) to determine the service life in operating hours.

$$(3) \quad L_{h} = \frac{L}{60 \cdot v_{m}}$$

As an alternative, it is possible to use formula (3) to calculate the service life in operating hours using the average speed  $v_m$ . This average speed  $v_m$  is calculated with speeds that can be changed on a stepwise basis using discrete time steps  $q_{tn}$  of the individual load stages (4).

(4) 
$$V_m = \frac{|v_1| \cdot q_{t1} + |v_2| \cdot q_{t2} + \dots + |v_n| \cdot q_{tn}}{100\%}$$

$$L_{na} = a_1 \cdot \left(\frac{C_{100}}{f_w \cdot F_m}\right)^3 \cdot 10^5 \,\mathrm{m}$$

 $L_{ha} = \frac{L_{na}}{2 \cdot s \cdot n \cdot 60}$ 

If a 90 percent requisite reliability is not enough, you must reduce the service life values by a factor of  $a_1$  in accordance with the table below.

| Requisite reliability (%) | L <sub>na</sub>  | Factor a <sub>1</sub> |
|---------------------------|------------------|-----------------------|
| 90                        | L <sub>10a</sub> | 1.00                  |
| 95                        | L <sub>5a</sub>  | 0.64                  |
| 96                        | L <sub>4a</sub>  | 0.55                  |
| 97                        | L <sub>3a</sub>  | 0.47                  |
| 98                        | L <sub>2a</sub>  | 0.37                  |
| 99                        | L <sub>1a</sub>  | 0.25                  |

#### Notes

DIN ISO 14728-1 limits the validity of the formula (1) to dynamically equivalent loads  $F_m < 0.5 C_{100}$ . However, in our tests we verified that under ideal operating conditions this service life formula can be applied up to loads of  $F_m = C_{100}$ . Under some circumstances, with stroke lengths below 2 · Ball Runner Block length B<sub>1</sub> (see the dimension tables) a load rating reduction may be necessary. Please consult us.

# General technical data and calculations

# Load on bearing for calculating the service life

### Note

In general, both the static and dynamic load ratios should not be below the minimum value of 4.0. In the case of applications that place high demands on rigidity and/or the service life, a higher load ratio is necessary. With tensile loads, check the screw stability. See the chapter entitled "Mounting instructions".



**Combined equivalent load** 

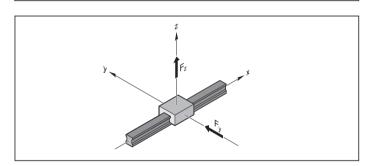
In the case of a combined vertical and horizontal external load, calculate the dynamic equivalent load  $F_{\rm comb}$  according to formula (5).

### Note

The structure of the Ball Rail System permits this simplified calculation.

### Note

Reduce an external load that affects the Ball Runner Block at any angle with the correct sign to  $F_y$  and  $F_z$  and insert the amounts into formula (5) or (6).


# Combined equivalent load in conjunction with moments

Using formula (6), you can combine all the partial loads that occur in a load case into one single comparison load. i.e. the combined equivalent load.

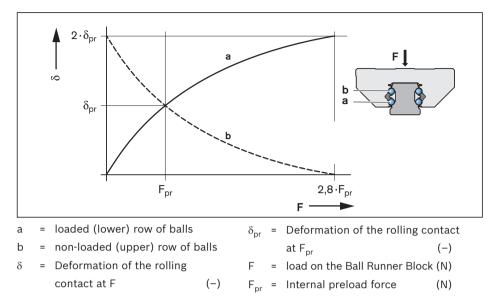
### Notes

Including moments as stated in formula (6) only applies to an individual Ball Guide Rail with just one Ball Runner Block. The formula is simpler for other combinations.

The forces and moments plotted in the coordinate system can also have an effect in the opposite direction. Reduce an external load that affects the Ball Runner Block at any angle to  $F_y$  and  $F_z$  and insert the amounts into formula (6). The structural design of the Ball Runner Blocks allows this simplified calculation.



(5)  $F_{comb} = |F_y| + |F_z|$ 


(6) 
$$F_{comb} = |F_y| + |F_z| + C_{100} \cdot \frac{|M_x|}{M_{t100}} + C_{100} \cdot \frac{|M_y|}{M_{L100}} + C_{100} \cdot \frac{|M_z|}{M_{L100}}$$



# Considering the internal preloading force F<sub>pr</sub>

To increase the rigidity and precision of the guide system, it is advisable to use pre-tensioned Ball Runner Blocks (c.f. "System Preloading Selection Criterion").

When using Ball Runner Blocks of preload classes C2, it may be necessary to consider the internal preload force; this is because both rows of balls a and b are pre-tensioned against one another by a specific oversize at an internal preload force  $F_{pr}$  and deform by the amount  $\delta_{pr}$  (see the diagram).



### Effective equivalent load on bearing

From an external load amounting to 2.8 times the internal preload force  $\rm F_{pr}$  onward, a row of balls becomes preload-free.

### Note

Under highly dynamic loading conditions, the combined equivalent load should be  $F_{comb} < 2.8 \cdot F_{pr}$  to prevent damage to anti-friction bearings due to slippage.



(8)  $F_{eff} = \left(\frac{F_{comb}}{2.8 \cdot F_{pr}} + 1\right)^{1/2} F_{pr}$ 

### Case 1

 $F_{comb} > 2.8 \cdot F_{pr}$ In this case, the internal preload force  $F_{pr}$  does not affect the service life.

### Case 2

 $F_{comb} \le 2.8 \cdot F_{pr}$ The preload force  $F_{pr}$  is included in the calculation of the effective equivalent load on bearing.

### General technical data and calculations

#### Dynamic equivalent load on bearing

With different load stages, calculate the dynamic equivalent load on bearing according to formula (9).

(9) 
$$F_{m} = \frac{3}{\sqrt{(F_{eff 1})^{3} \cdot \frac{q_{s1}}{100\%} + (F_{eff 2})^{3} \cdot \frac{q_{s2}}{100\%} + ... + (F_{eff n})^{3} \cdot \frac{q_{sn}}{100\%}}$$

### Equivalent static load on bearing

With a combined vertical and horizontal external static load in conjunction with a static torsional or longitudinal moment, calculate the static equivalent load on bearing  $F_{0 \text{ comb}}$  according to formula (10).

(10) 
$$F_{0 \text{ comb}} = |F_{0y}| + |F_{0z}| + C_0 \cdot \frac{|M_{0x}|}{M_{t0}} + C_0 \cdot \frac{|M_{0y}|}{M_{L0}} + C_0 \cdot \frac{|M_{0z}|}{M_{L0}}$$

### Notes

The static equivalent load on bearing  $F_{0 \text{ comb}}$  must not exceed the static load capacity  $C_0$ . Formula (10) only applies when using a single Ball Guide Rail.

Reduce an external load that affects the Ball Runner Block at any angle to  $F_{0y}$  and  $F_{0z}$  and insert the amounts into formula (10).

### Definitions and calculation for dynamic and static load ratios

Using the ratio of load rating to load of the Ball Runner Blocks, you can make a preselection of the guideway. The dynamic loading ratio  $C_{100}/F_{max}$  and the static loading ratio  $C_0/F_{0 max}$  should be selected according to the application. The necessary load ratings are calculated from this. The load rating overview yields the corresponding dimensions and format.

### **Recommended values for load ratios**

The table below contains guideline values for the load ratios.

The values are offered merely as a rough guide reflecting typical customer requirements (e.g. service life, accuracy, rigidity) by sector and application.

**Case 1:** Static load  $F_{0 max} > F_{max}$ :

**Case 2:** Static load F<sub>0 max</sub> < F<sub>max</sub>:

| Dynamic ratio = $\frac{C_{100}}{F_{max}}$          | Static ratio = $\frac{C_0}{F_{0 max}}$ | Static ratio = $\frac{C_{\text{r}}}{F_{\text{max}}}$ | 0<br>ax                           |
|----------------------------------------------------|----------------------------------------|------------------------------------------------------|-----------------------------------|
| Machine type/sector                                | Application example                    | e C <sub>100</sub> /Fmax                             | C <sub>0</sub> /F <sub>0max</sub> |
| Machine tools                                      | General                                | 6 9                                                  | > 4                               |
|                                                    | Turning                                | 6 7                                                  | > 4                               |
|                                                    | Milling                                | 6 7                                                  | > 4                               |
|                                                    | Grinding                               | 9 10                                                 | > 4                               |
|                                                    | Engraving                              | 5                                                    | > 3                               |
| Rubber and plastics processing machinery           | Injection molding                      | 8                                                    | > 2                               |
| Woodworking and wood processing machines           | Sawing, milling                        | 5                                                    | > 3                               |
| Assembly/handling technology and industrial robots | Handling                               | 5                                                    | > 3                               |
| Oil hydraulics and pneumatics                      | Raising/lowering                       | 6                                                    | > 4                               |

### Static load safety factor S<sub>0</sub>

You must verify mathematically any structural design involving rolling contact with regard to the static load safety factor. The static load safety factor for a linear guide results from the following equation:

$$S_0 = \frac{C_0}{F_{0 max}}$$

In this connection,  $F_{0 max}$  represents the maximum load amplitude that can occur, which can affect the linear guide. It does not matter whether this load is exerted only for a short period. It may represent the peak amplitude of an overall dynamic loading. For dimensioning, the data shown in the table applies.

| Conditions of use                                                                                               | Static load safety factor S <sub>0</sub> |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Overhead hanging arrangements or applications with serious potential risks                                      | ≥ 20                                     |
| High dynamic load when at standstill, contamination.                                                            | 8 - 12                                   |
| Normal dimensioning of machinery and plant without full knowledge of the load parameters or connection details. | 5 - 8                                    |
| Full knowledge of all the load data. Vibration-free operation is ensured.                                       | 3 - 5                                    |

#### Key to formulas

| Formula                | Unit | Designation                                           | Formula                       | Unit          | Designation                                           |
|------------------------|------|-------------------------------------------------------|-------------------------------|---------------|-------------------------------------------------------|
| a                      | -    | loaded (lower) row of balls                           | M <sub>x</sub>                | Nm            | Load due to the resulting moment around               |
| a <sub>1</sub>         | -    | Service life factor                                   |                               |               | the x-axis                                            |
| b                      | -    | non-loaded (upper) row of balls                       | M <sub>0x</sub>               | Nm            | Load due to the static moment around the x-axis       |
| С                      | N    | Dynamic load capacity                                 | M <sub>v</sub>                | Nm            | Load due to the resulting moment around               |
| C <sub>0</sub>         | N    | Static load capacity                                  | Wiy                           |               | the y-axis                                            |
| F <sub>max</sub>       | N    | Maximum dynamic load                                  | M <sub>ov</sub>               | Nm            | Load due to the static moment around                  |
| F <sub>0 max</sub>     | N    | Maximum static load                                   | 0y                            |               | the y-axis                                            |
| F <sub>comb</sub>      | N    | Combined equivalent load                              | Mz                            | Nm            | Load due to the resulting moment around               |
| F <sub>0 comb</sub>    | N    | Equivalent static load on bearing                     |                               |               | the z-axis                                            |
| $F_{eff}$              | N    | Effective equivalent load on bearing                  | M <sub>oz</sub>               | Nm            | Load due to the static moment around the z-axis       |
| F <sub>eff 1 - n</sub> | Ν    | Uniform effective individual loads                    | L                             | m             | Nominal life (travel range)                           |
| Fm                     | N    | Dynamic equivalent load on bearing                    |                               | h             | Nominal life (time)                                   |
| F <sub>pr</sub>        | N    | Preload force                                         | L                             | m             | Modified nominal life (travel range)                  |
| Fy                     | N    | External load due to a resulting force                | L <sub>na</sub>               | h             | Modified nominal life (traver range)                  |
|                        |      | in the y-direction                                    | L <sub>ha</sub>               |               |                                                       |
| F <sub>Oy</sub>        | N    | External load due to a static force in the            | n                             | rpm           | Stroke repetition rate (double strokes)               |
|                        | N    | y-direction<br>External load due to a resulting force | $q_{t1} \dots q_{tn}$         | %             | Discrete time steps for $v_1 \dots v_n$ of phases 1 n |
| Fz                     |      | in the z-direction                                    | S                             | m             | Stroke length                                         |
| F <sub>0z</sub>        | N    | External load due to a static force                   | S <sub>0</sub>                | -             | Static load safety factor                             |
| 02                     |      | in the z-direction                                    | v <sub>m</sub>                | m/min         | Average linear speed                                  |
| f <sub>w</sub>         | -    | Load factor                                           | V <sub>1</sub> V <sub>n</sub> | m/min         | Travel speeds of phases 1 n                           |
| M <sub>t</sub>         | Nm   | Dynamic torsional moment load capacity <sup>1)</sup>  | V                             | m/min         | Travel speed                                          |
| M <sub>t0</sub>        | Nm   | Static torsional moment load capacity <sup>1)</sup>   | δ                             | -             | Deformation of rolling contact at F                   |
| ML                     | Nm   | Dynamic longitudinal moment capacity <sup>1)</sup>    | δ <sub>pr</sub>               | -             | Deformation of rolling contact at F <sub>pr</sub>     |
| M <sub>L0</sub>        | Nm   | Static longitudinal moment capacity <sup>1)</sup>     | Refer to the                  | table for the | values                                                |

# System preload

Definition of preload

Ball Runner Blocks can be pre-tensioned to increase rigidity. The internal preload forces that occur in this connection must be considered in the life expectancy calculation. You can choose the preload class to match the area of application. Refer to the table for preload force  $F_{pr}$ . Rigidity diagrams are available on request.

To prevent reductions to the service life, the preload should not exceed 1/3 of the load on bearing F.

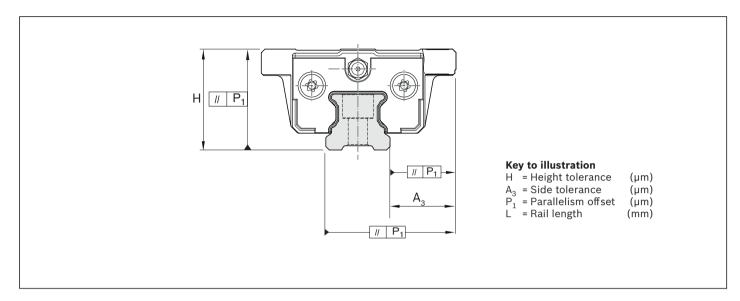
In general, the rigidity of the Ball Runner Block rises with increasing preload. If vibrations occur, choose the correspondingly high preload (preload class C2).

| Code | Preload                     | Application area                                                                                                                                                                                                                                                                                                              |
|------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C0   | Without preload (clearance) | For particularly smooth-running guide systems with the lowest possible friction for applications with large installation tolerances.                                                                                                                                                                                          |
|      |                             | Clearance versions are available only in accuracy classes N and H.                                                                                                                                                                                                                                                            |
| C1   | Moderate preload            | For precise guide systems with low external loads and high demands on overall rigidity.                                                                                                                                                                                                                                       |
| C2   | Medium preload              | For precise guide systems with both high external loading and high demands on overall rigidity;<br>also recommended for single-rail systems and high accelerations.<br>Above average moment loads can be absorbed without significant elastic deflection.<br>Further improved overall rigidity with only medium moment loads. |

### Preload force $F_{pr}$ (N) of the Ball Runner Blocks

| Material numbers | Format     | Preload class | Size | Size  |       |       |       |       |  |  |  |  |  |
|------------------|------------|---------------|------|-------|-------|-------|-------|-------|--|--|--|--|--|
|                  |            |               | 15   | 20    | 25    | 30    | 35    | 45    |  |  |  |  |  |
| R205A<br>R205C   | FNS<br>SNS | C1            | 150  | 230   | 350   | 500   | 690   | 990   |  |  |  |  |  |
| R205E            | SNH        | C2            | 590  | 950   | 1,420 | 2,030 | 2,790 | 4,030 |  |  |  |  |  |
| R205B<br>R205D   | FLS<br>SLS | C1            | 180  | 290   | 450   | 620   | 880   | 1,270 |  |  |  |  |  |
| R205F            | SLH        | C2            | 750  | 1,180 | 1,820 | 2,540 | 3,580 | 5,150 |  |  |  |  |  |

### Example


- ► Area of application: Precise guide systems with low external load and high overall rigidity requirements. This results in preload class C1.
- ▶ Selected Ball Runner Block: FNS R205A 314 20
- The selected Ball Runner Block yields a preload force of  $F_{pr}$  = 690 N according to the table.

### Accuracy classes

### Accuracy classes and their tolerances

Ball Rail Systems BSCL are available in three accuracy classes.

For details of the available Ball Runner Blocks and Ball Guide Rails, see the "Material numbers" tables.

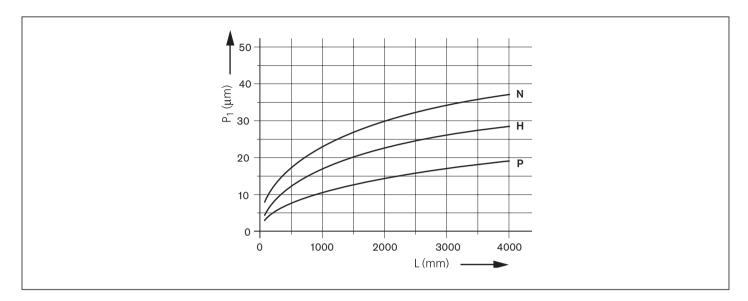


### Precision manufacturing process makes interchangeability easy

Rexroth manufactures its Ball Guide Rails and Ball Runner Blocks with such high precision, especially in the ball raceway zone, that each individual component element is fully interchangeable. For example, a Ball Runner Block can be used without problems on various Ball Guide Rails of the same size. Similarly, different Ball Runner Blocks can also be used on one and the same Ball Guide Rail.

### Steel Ball Rail Systems

| Measured at<br>middle of Run-<br>ner BlockFor any Ball Runner Block/rail combination at any positionFor different Ball Runner Blocks at<br>For different Ball Runner Bloc | at same position on rail |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|


| Accuracy<br>classes | Tolerances of the dimensions ( | μm)            | Max. differences of dimensions H and $A_3$ on one rail ( $\mu$ m) |
|---------------------|--------------------------------|----------------|-------------------------------------------------------------------|
|                     | Н                              | A <sub>3</sub> | Δ <b>Η,</b> Δ <b>Α</b> <sub>3</sub>                               |
| N                   | ±100                           | ±40            | 30                                                                |
| Н                   | ±40                            | ±20            | 15                                                                |
| Ρ                   | ±20                            | ±10            | 7                                                                 |

### Guide systems with parallel rails

When choosing the preload class, also pay attention to the permissible parallelism offset of the rails ("Accuracy class selection criterion").

When specifying Ball Rail Systems of accuracy class N, we recommend preload class C0 or C1 to avoid distortive stress due to the tolerances.

### Parallelism offset $P_1$ of the Ball Rail System in operation Measured at middle of Runner Block



### Tolerances for combination of accuracy classes

| Ball F | Runner Blocks                                          |      | Ball Guide Rails |      |      |
|--------|--------------------------------------------------------|------|------------------|------|------|
|        |                                                        |      | N                | Н    | P    |
|        |                                                        |      | (µm)             | (µm) | (µm) |
| N      | Tolerance, dimension H                                 | (µm) | ±100             | ±48  | ±32  |
|        | Tolerance of dimension A <sub>3</sub>                  | (µm) | ±40              | ±28  | ±22  |
|        | Max. diff. Dimensions H and A <sub>3</sub> on one rail | (µm) | 30               | 30   | 30   |
| Н      | Tolerance, dimension H                                 | (µm) | ±92              | ±40  | ±24  |
|        | Tolerance of dimension A <sub>3</sub>                  | (µm) | ±32              | ±20  | ±14  |
|        | Max. diff. Dimensions H and A <sub>3</sub> on one rail | (µm) | 15               | 15   | 15   |
| Р      | Tolerance, dimension H                                 | (µm) | ±88              | ±36  | ±20  |
|        | Tolerance of dimension A <sub>3</sub>                  | (µm) | ±28              | ±16  | ±10  |
|        | Max. diff. Dimensions H and A <sub>3</sub> on one rail | (µm) | 7                | 7    | 7    |

### **Recommendations for combining accuracy classes**

Recommended with relatively large Ball Runner Block distances and long strokes:

Ball Guide Rail in higher accuracy class than Ball Runner Blocks.

Recommended with small Ball Runner Block distances and short strokes:

Ball Runner Blocks in higher accuracy class than Ball Guide Rail.

### Ball Runner Block ordering example

### **Ordering Ball Runner Blocks**

The material number is composed of the code numbers for the individual options. Each option has its own code number.

| Order example                              | BSCL Ball Ru | nner Block R205 A                                      | 7 | 1 | 3 | 20 |
|--------------------------------------------|--------------|--------------------------------------------------------|---|---|---|----|
| <ul> <li>Ball Runner Blocks FNS</li> </ul> | Format       | A = FNS (flanged, normal, standard height)             |   |   |   |    |
| <ul> <li>Size 30</li> </ul>                |              | $\mathbf{B} = FLS$ (flanged, long, standard height)    |   |   |   |    |
| Preload class C1                           |              | $\mathbf{C} = SNS$ (slimline, normal, standard height) |   |   |   |    |
| <ul> <li>Accuracy class H</li> </ul>       |              | D = SLS (slimline, long, standard height)              |   |   |   |    |
| <ul> <li>With standard sealing</li> </ul>  |              | $\mathbf{E} = SNH$ (slimline, normal, high)            |   |   |   |    |
| •                                          |              | $\mathbf{F} = SLH$ (slimline, long, high)              |   |   |   |    |
| Prelubricated                              | Size         | <b>1</b> = size 15                                     |   |   |   |    |
| Material number: R205A 713 20              |              | <b>8</b> = size 20                                     |   |   |   |    |
|                                            |              | <b>2</b> = size 25                                     |   |   |   |    |
|                                            |              | <b>7</b> = size 30                                     |   |   |   |    |
|                                            |              | <b>3</b> = size 35                                     |   |   |   |    |
|                                            |              | <b>4</b> = size 45                                     |   |   |   |    |
|                                            | Preload      | 9 = preload class C0                                   |   | - |   |    |
|                                            |              | 1 = preload class C1                                   |   |   |   |    |
|                                            |              | <b>2</b> = preload class C2                            |   |   |   |    |
|                                            | Accuracy     | 4 = accuracy class N                                   |   |   |   |    |
|                                            |              | 3 = accuracy class H                                   |   |   |   |    |
|                                            |              | 2 = accuracy class P                                   |   |   |   |    |
|                                            | Lubrication  | 20 = standard seal, prelubricated and preserved        |   |   |   |    |

### BSCL Ball Runner Block type key

| BALL RUNNER BLOCK CS | KWE | - | 0 | 3 | 0 | - | F | Ν | S | - | С | 1 | - | н | - | 1 |
|----------------------|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|                      |     |   |   | 1 |   |   |   | 2 |   |   | ~ | 3 |   | 4 |   | 5 |

| 1 Size  |             |
|---------|-------------|
| Feature | Designation |
| 015     | Size 15     |
| 020     | Size 20     |
| 025     | Size 25     |
| 030     | Size 30     |
| 035     | Size 35     |
| 045     | Size 45     |

| 2 Format |                                   |
|----------|-----------------------------------|
| Feature  | Designation                       |
| FNS      | Flanged, normal, standard height  |
| FLS      | Flanged, long, standard height    |
| SNS      | Slimline, normal, standard height |
| SLS      | Slimline, long, standard height   |
| SNH      | Slimline, normal, high            |
| SLH      | Slimline, long, high              |


| 3 Preload class | s                                   | 4 | Acc |  |
|-----------------|-------------------------------------|---|-----|--|
| Feature         | Feature                             |   |     |  |
| C0              | Without preload                     | N |     |  |
| C1              | Preload class C1 (moderate preload) | Н |     |  |
| C2              | Р                                   |   |     |  |

| 4     | Accuracy class |             |  |  |  |
|-------|----------------|-------------|--|--|--|
| Featu | ire            | Designation |  |  |  |
| Ν     |                | Normal      |  |  |  |
| Н     |                | High        |  |  |  |
| Ρ     |                | Precision   |  |  |  |

#### 5 Lubrication (Runner Block)

| Feature | Designation                         |  |  |  |  |  |
|---------|-------------------------------------|--|--|--|--|--|
| 1       | With initial lubrication, preserved |  |  |  |  |  |

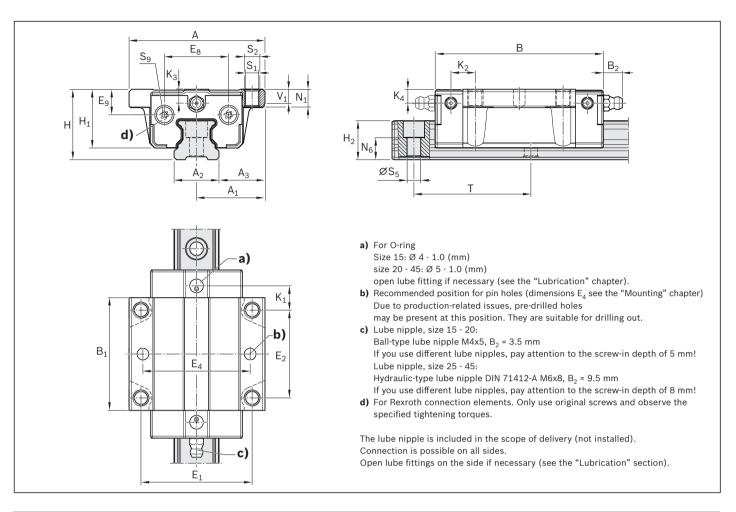
# FNS – flanged, normal, standard height – R205A



### **Dynamic characteristics**

| Travel speed:                       | v <sub>max</sub> = 3 m/s                 |
|-------------------------------------|------------------------------------------|
| Acceleration:                       | a <sub>max</sub> = 250 m/s <sup>2</sup>  |
| (If $F_{comb} > 2.8 \cdot F_{pr}$ : | a <sub>max</sub> = 50 m/s <sup>2</sup> ) |

#### Note


Can be used on all BSCL Ball Guide Rails KSE-...-SNS

### **Options and material numbers**

| Size | Ball Runner Block with size | Preload clas | S  |    | Accuracy cl | ass |   | Standard seal |  |  |
|------|-----------------------------|--------------|----|----|-------------|-----|---|---------------|--|--|
|      |                             | C0           | C1 | C2 | N           | н   | P | Prelubricated |  |  |
| 15   | R205A 1                     | 9            |    |    | 4           | 3   | - | 20            |  |  |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |  |  |
|      |                             |              |    | 2  | -           | 3   | 2 | 20            |  |  |
| 20   | R205A 8                     | 9            |    |    | 4           | 3   | - | 20            |  |  |
|      |                             |              | 1  |    | 4           | 3   | 2 |               |  |  |
|      |                             |              |    | 2  | -           | 3   | 2 | 20            |  |  |
| 25   | R205A 2                     | 9            |    |    | 4           | 3   | - | 20            |  |  |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |  |  |
|      |                             |              |    | 2  | -           | 3   | 2 | 20<br>20      |  |  |
| 30   | R205A 7                     | 9            |    |    | 4           | 3   |   |               |  |  |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |  |  |
|      |                             |              |    | 2  | -           | 3   | 2 | 20            |  |  |
| 35   | R205A 3                     | 9            |    |    | 4           | 3   | - | 20            |  |  |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |  |  |
|      |                             |              |    | 2  | -           | 3   | 2 | 20            |  |  |
| 45   | R205A 4                     | 9            |    |    | 4           | 3   | _ | 20            |  |  |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |  |  |
|      |                             |              |    | 2  | -           | 3   | 2 | 20            |  |  |

| Size | Load ratings (N)   |                                |                | Load moments        | (Nm)                            |                 |                                |                                 |                 |  |  |
|------|--------------------|--------------------------------|----------------|---------------------|---------------------------------|-----------------|--------------------------------|---------------------------------|-----------------|--|--|
|      |                    |                                |                |                     |                                 |                 |                                |                                 |                 |  |  |
|      | C <sub>50</sub> 1) | C <sub>100</sub> <sup>2)</sup> | C <sub>0</sub> | M <sub>t50</sub> 1) | M <sub>t100</sub> <sup>2)</sup> | M <sub>t0</sub> | M <sub>L50</sub> <sup>1)</sup> | M <sub>L100</sub> <sup>2)</sup> | M <sub>L0</sub> |  |  |
| 15   | 11,500             | 9,100                          | 11,700         | 98                  | 78                              | 100             | 79                             | 63                              | 82              |  |  |
| 20   | 18,400             | 14,600                         | 19,600         | 190                 | 150                             | 210             | 160                            | 130                             | 170             |  |  |
| 25   | 27,500             | 21,800                         | 30,600         | 340                 | 270                             | 380             | 280                            | 220                             | 310             |  |  |
| 30   | 39,300             | 31,200                         | 42,200         | 590                 | 470                             | 640             | 450                            | 360                             | 490             |  |  |
| 35   | 54,100             | 42,900                         | 56,600         | 970                 | 770                             | 1,030           | 720                            | 570                             | 760             |  |  |
| 45   | 78,100             | 62,000                         | 83,000         | 1,790               | 1,420                           | 1,930           | 1,320                          | 1,050                           | 1,420           |  |  |

1) Dynamic load capacity and load moments based on a travel life of 50,000 m.



| Size | Dimensions | s (mm)         |                |                |                   |                |                |                |                |                |      |       |                |
|------|------------|----------------|----------------|----------------|-------------------|----------------|----------------|----------------|----------------|----------------|------|-------|----------------|
|      | A          | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | B <sup>+0.5</sup> | B <sub>1</sub> | E <sub>1</sub> | E <sub>2</sub> | E <sub>8</sub> | E <sub>9</sub> | н    | H1    | H <sub>2</sub> |
| 15   | 47.0       | 23.50          | 15.0           | 16.00          | 58.2              | 39.2           | 38.0           | 30.0           | 20.5           | 7.8            | 24.0 | 19.90 | 14.10          |
| 20   | 63.0       | 31.50          | 20.0           | 21.50          | 75.0              | 49.6           | 53.0           | 40.0           | 29.0           | 10.15          | 30.0 | 25.30 | 17.00          |
| 25   | 70.0       | 35.00          | 23.0           | 23.50          | 86.2              | 57.8           | 57.0           | 45.0           | 33.0           | 13.0           | 36.0 | 30.00 | 20.00          |
| 30   | 90.0       | 45.00          | 28.0           | 31.00          | 97.7              | 67.4           | 72.0           | 52.0           | 42.0           | 14.25          | 42.0 | 35.35 | 23.00          |
| 35   | 100.0      | 50.00          | 34.0           | 33.00          | 110.5             | 77.0           | 82.0           | 62.0           | 50.0           | 15.7           | 48.0 | 40.40 | 26.50          |
| 45   | 120.0      | 60.00          | 45.0           | 37.50          | 137.5             | 97.0           | 100.0          | 80.0           | 61.0           | 19.5           | 60.0 | 50.30 | 33.00          |

| Size | Dimensions     | ; (mm)         |                |                |                |                 |                |                |                       |                |       |                | Weight (kg) |
|------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|-----------------------|----------------|-------|----------------|-------------|
|      | K <sub>1</sub> | K <sub>2</sub> | K <sub>3</sub> | K <sub>4</sub> | N <sub>1</sub> | $N_6^{\pm 0.5}$ | S <sub>1</sub> | S <sub>2</sub> | <b>S</b> <sub>5</sub> | S <sub>9</sub> | т     | V <sub>1</sub> | m           |
| 15   | 8.0            | 9.1            | 3.80           | 3.80           | 5.2            | 8.6             | 4.3            | M5             | 4.5                   | M2.5x5         | 60.0  | 5.0            | 0.18        |
| 20   | 11.8           | 11.8           | 5.65           | 5.65           | 7.7            | 10.0            | 5.3            | M6             | 6.0                   | M2.5x6         | 60.0  | 6.0            | 0.41        |
| 25   | 12.5           | 12.5           | 7.00           | 7.00           | 9.0            | 11.3            | 6.7            | M8             | 7.0                   | M3x6.5         | 60.0  | 7.5            | 0.60        |
| 30   | 14.0           | 14.7           | 7.25           | 7.25           | 11.0           | 12.0            | 8.5            | M10            | 9.0                   | M3x6.5         | 80.0  | 7.0            | 1.01        |
| 35   | 14.5           | 16.2           | 7.00           | 7.00           | 12.0           | 15.5            | 8.5            | M10            | 9.0                   | M3x6.5         | 80.0  | 8.0            | 1.51        |
| 45   | 17.3           | 19.5           | 10.50          | 10.50          | 15.0           | 17.0            | 10.4           | M12            | 14.0                  | M3x6.5         | 105.0 | 10.0           | 2.92        |

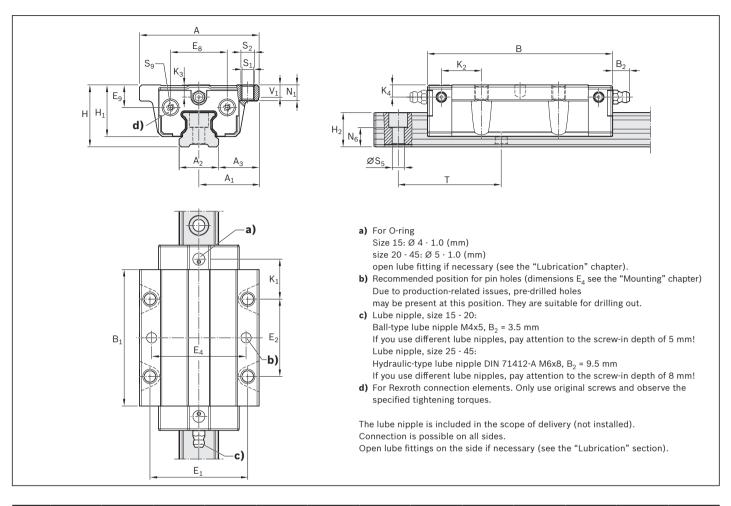
# FLS – flanged, long, standard height – R205B



#### **Dynamic characteristics**

| Travel speed:                       | v <sub>max</sub> = 3 m/s                 |
|-------------------------------------|------------------------------------------|
| Acceleration:                       | a <sub>max</sub> = 250 m/s <sup>2</sup>  |
| (If $F_{comb} > 2.8 \cdot F_{pr}$ : | a <sub>max</sub> = 50 m/s <sup>2</sup> ) |

### Note


Can be used on all BSCL Ball Guide Rails KSE-...-SNS

### **Options and material numbers**

| Size | Ball Runner Block with size | Preload clas | S  |    | Accuracy cl | ass |   | Standard seal |
|------|-----------------------------|--------------|----|----|-------------|-----|---|---------------|
|      |                             | CO           | C1 | C2 | N           | н   | P | Prelubricated |
| 15   | R205B 1                     | 9            |    |    | 4           | 3   | - | 20            |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |
|      |                             |              |    | 2  | -           | 3   | 2 | 20            |
| 20   | R205B 8                     | 9            |    |    | 4           | 3   | - | 20            |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |
|      |                             |              |    | 2  | -           | 3   | 2 | 20            |
| 25   | R205B 2                     | 9            |    |    | 4           | 3   | - | 20            |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |
|      |                             |              |    | 2  | -           | 3   | 2 | 20<br>20      |
| 30   | R205B 7                     | 9            |    |    | 4           | 3   |   |               |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |
|      |                             |              |    | 2  | -           | 3   | 2 | 20            |
| 35   | R205B 3                     | 9            |    |    | 4           | 3   | - | 20            |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |
|      |                             |              |    | 2  | -           | 3   | 2 | 20            |
| 45   | R205B 4                     | 9            |    |    | 4           | 3   | - | 20            |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |
|      |                             |              |    | 2  | -           | 3   | 2 | 20            |

| Size | Load ratings (N)              |                                |                | Load moments                   | (Nm)                            |                 |                     |                                 |                           |  |
|------|-------------------------------|--------------------------------|----------------|--------------------------------|---------------------------------|-----------------|---------------------|---------------------------------|---------------------------|--|
|      |                               | ↓ ↓<br>→←                      |                |                                |                                 |                 |                     |                                 |                           |  |
|      | C <sub>50</sub> <sup>1)</sup> | C <sub>100</sub> <sup>2)</sup> | C <sub>0</sub> | M <sub>t50</sub> <sup>1)</sup> | M <sub>t100</sub> <sup>2)</sup> | M <sub>t0</sub> | M <sub>L50</sub> 1) | M <sub>L100</sub> <sup>2)</sup> | <u>ч.</u> М <sub>L0</sub> |  |
| 15   | 14,500                        | 11,500                         | 16,800         | 130                            | 100                             | 150             | 140                 | 110                             | 160                       |  |
| 20   | 22,800                        | 18,100                         | 27,100         | 240                            | 190                             | 290             | 260                 | 210                             | 320                       |  |
| 25   | 35,300                        | 28,000                         | 44,200         | 440                            | 350                             | 550             | 490                 | 390                             | 620                       |  |
| 30   | 49,100                        | 39,000                         | 58,800         | 740                            | 590                             | 890             | 770                 | 610                             | 920                       |  |
| 35   | 69,300                        | 55,000                         | 81,600         | 1,260                          | 1,000                           | 1,480           | 1,300               | 1,030                           | 1,530                     |  |
| 45   | 99,800                        | 79,200                         | 120,000        | 2,320                          | 1,840                           | 2,780           | 2,380               | 1,890                           | 2,860                     |  |

1) Dynamic load capacity and load moments based on a travel life of 50,000 m.



| imensions | (mm)                                  |                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α         | A <sub>1</sub>                        | A <sub>2</sub>                                                                                                                          | A <sub>3</sub>                                                                                                                                                                                           | B <sup>+0.5</sup>                                                                                                                                                                                                                                                              | B <sub>1</sub>                                                                                                                                                                                                                                                                                                                                     | E <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                       | E <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E <sub>9</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H1                                                                                                                                                                                                                                              | H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 47.0      | 23.50                                 | 15.0                                                                                                                                    | 16.00                                                                                                                                                                                                    | 72.6                                                                                                                                                                                                                                                                           | 53.6                                                                                                                                                                                                                                                                                                                                               | 38.0                                                                                                                                                                                                                                                                                                                                                                                                                 | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19.90                                                                                                                                                                                                                                           | 14.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 63.0      | 31.50                                 | 20.0                                                                                                                                    | 21.50                                                                                                                                                                                                    | 91.0                                                                                                                                                                                                                                                                           | 65.6                                                                                                                                                                                                                                                                                                                                               | 53.0                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.30                                                                                                                                                                                                                                           | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 70.0      | 35.00                                 | 23.0                                                                                                                                    | 23.50                                                                                                                                                                                                    | 107.9                                                                                                                                                                                                                                                                          | 79.5                                                                                                                                                                                                                                                                                                                                               | 57.0                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.00                                                                                                                                                                                                                                           | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 90.0      | 45.00                                 | 28.0                                                                                                                                    | 31.00                                                                                                                                                                                                    | 119.7                                                                                                                                                                                                                                                                          | 89.4                                                                                                                                                                                                                                                                                                                                               | 72.0                                                                                                                                                                                                                                                                                                                                                                                                                 | 52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35.35                                                                                                                                                                                                                                           | 23.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 100.0     | 50.00                                 | 34.0                                                                                                                                    | 33.00                                                                                                                                                                                                    | 139.0                                                                                                                                                                                                                                                                          | 105.5                                                                                                                                                                                                                                                                                                                                              | 82.0                                                                                                                                                                                                                                                                                                                                                                                                                 | 62.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.40                                                                                                                                                                                                                                           | 26.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 120.0     | 60.00                                 | 45.0                                                                                                                                    | 37.50                                                                                                                                                                                                    | 174.0                                                                                                                                                                                                                                                                          | 133.5                                                                                                                                                                                                                                                                                                                                              | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                | 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50.30                                                                                                                                                                                                                                           | 33.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | 47.0<br>63.0<br>70.0<br>90.0<br>100.0 | 47.0         23.50           63.0         31.50           70.0         35.00           90.0         45.00           100.0         50.00 | 47.0         23.50         15.0           63.0         31.50         20.0           70.0         35.00         23.0           90.0         45.00         28.0           100.0         50.00         34.0 | 47.0         23.50         15.0         16.00           63.0         31.50         20.0         21.50           70.0         35.00         23.0         23.50           90.0         45.00         28.0         31.00           100.0         50.00         34.0         33.00 | 47.0         23.50         15.0         16.00         72.6           63.0         31.50         20.0         21.50         91.0           70.0         35.00         23.0         23.50         107.9           90.0         45.00         28.0         31.00         119.7           100.0         50.00         34.0         33.00         139.0 | 47.0         23.50         15.0         16.00         72.6         53.6           63.0         31.50         20.0         21.50         91.0         65.6           70.0         35.00         23.0         23.50         107.9         79.5           90.0         45.00         28.0         31.00         119.7         89.4           100.0         50.00         34.0         33.00         139.0         105.5 | 47.0         23.50         15.0         16.00         72.6         53.6         38.0           63.0         31.50         20.0         21.50         91.0         65.6         53.0           70.0         35.00         23.0         23.50         107.9         79.5         57.0           90.0         45.00         28.0         31.00         119.7         89.4         72.0           100.0         50.00         34.0         33.00         139.0         105.5         82.0 | 47.0         23.50         15.0         16.00         72.6         53.6         38.0         30.0           63.0         31.50         20.0         21.50         91.0         65.6         53.0         40.0           70.0         35.00         23.0         23.50         107.9         79.5         57.0         45.0           90.0         45.00         28.0         31.00         119.7         89.4         72.0         52.0           100.0         50.00         34.0         33.00         139.0         105.5         82.0         62.0 | 47.0         23.50         15.0         16.00         72.6         53.6         38.0         30.0         20.5           63.0         31.50         20.0         21.50         91.0         65.6         53.0         40.0         29.0           70.0         35.00         23.0         23.50         107.9         79.5         57.0         45.0         33.0           90.0         45.00         28.0         31.00         119.7         89.4         72.0         52.0         42.0           100.0         50.00         34.0         33.00         139.0         105.5         82.0         62.0         50.0 | 47.0       23.50       15.0       16.00       72.6       53.6       38.0       30.0       20.5       7.80         63.0       31.50       20.0       21.50       91.0       65.6       53.0       40.0       29.0       10.15         70.0       35.00       23.0       23.50       107.9       79.5       57.0       45.0       33.0       13.00         90.0       45.00       28.0       31.00       119.7       89.4       72.0       52.0       42.0       14.25         100.0       50.00       34.0       33.00       139.0       105.5       82.0       62.0       50.0       15.70 | 47.023.5015.016.0072.653.638.030.020.57.8024.063.031.5020.021.5091.065.653.040.029.010.1530.070.035.0023.023.50107.979.557.045.033.013.0036.090.045.0028.031.00119.789.472.052.042.014.2542.0100.050.0034.033.00139.0105.582.062.050.015.7048.0 | 47.0       23.50       15.0       16.00       72.6       53.6       38.0       30.0       20.5       7.80       24.0       19.90         63.0       31.50       20.0       21.50       91.0       65.6       53.0       40.0       29.0       10.15       30.0       25.30         70.0       35.00       23.0       23.50       107.9       79.5       57.0       45.0       33.0       13.00       36.0       30.00         90.0       45.00       28.0       31.00       119.7       89.4       72.0       52.0       42.0       14.25       42.0       35.35         100.0       50.00       34.0       33.00       139.0       105.5       82.0       62.0       50.0       15.70       48.0       40.40 |

| Size | Dimension      | s (mm)         |                |                |                |                 |                |                |                       |                |       |                | Weight (kg) |
|------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|-----------------------|----------------|-------|----------------|-------------|
|      | K <sub>1</sub> | K <sub>2</sub> | K <sub>3</sub> | K <sub>4</sub> | N <sub>1</sub> | $N_6^{\pm 0.5}$ | S <sub>1</sub> | S <sub>2</sub> | <b>S</b> <sub>5</sub> | S <sub>9</sub> | т     | V <sub>1</sub> | m           |
| 15   | 15.20          | 16.30          | 3.80           | 3.80           | 5.2            | 8.55            | 4.3            | M5             | 4.4                   | M2.5x5         | 60.0  | 5.0            | 0.25        |
| 20   | 19.80          | 19.80          | 5.65           | 5.65           | 7.7            | 10.0            | 5.3            | M6             | 6.0                   | M2.5x6         | 60.0  | 6.0            | 0.53        |
| 25   | 23.30          | 23.35          | 7.00           | 7.00           | 9.0            | 11.3            | 6.7            | M8             | 7.0                   | M3x6.5         | 60.0  | 7.5            | 0.80        |
| 30   | 25.00          | 25.70          | 7.25           | 7.25           | 11.0           | 12.0            | 8.5            | M10            | 9.0                   | M3x6.5         | 80.0  | 7.0            | 1.31        |
| 35   | 28.75          | 30.40          | 7.00           | 7.00           | 12.0           | 15.5            | 8.5            | M10            | 9.0                   | M3x6.5         | 80.0  | 8.0            | 2.02        |
| 45   | 35.5           | 37.75          | 10.50          | 10.50          | 15.0           | 17.0            | 10.4           | M12            | 14.0                  | M3x6.5         | 105.0 | 10.0           | 3.93        |

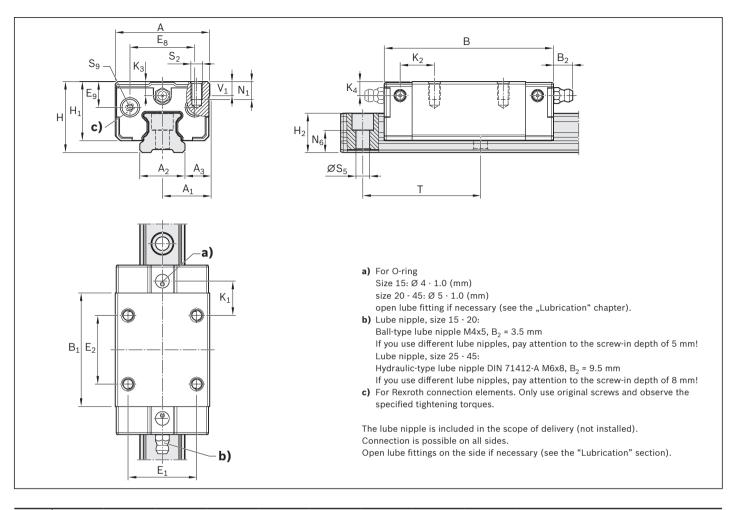
# SNS – slimline, normal, standard height – R205C



### **Dynamic characteristics**

| Travel speed:                       | v <sub>max</sub> = 3 m/s                 |
|-------------------------------------|------------------------------------------|
| Acceleration:                       | $a_{max} = 250 \text{ m/s}^2$            |
| (If $F_{comb} > 2.8 \cdot F_{pr}$ : | a <sub>max</sub> = 50 m/s <sup>2</sup> ) |

### Note


Can be used on all BSCL Ball Guide Rails KSE-...-SNS

### **Options and material numbers**

| Size | Ball Runner Block with size | Preload class |    | Accuracy class |   |   |   | Standard seal |  |  |
|------|-----------------------------|---------------|----|----------------|---|---|---|---------------|--|--|
|      |                             | CO            | C1 | C2             | N | н | Р | Prelubricated |  |  |
| 15   | R205C 1                     | 9             |    |                | 4 | 3 | - | 20            |  |  |
|      |                             |               | 1  |                | 4 | 3 | 2 | 20            |  |  |
|      |                             |               |    | 2              | - | 3 | 2 | 20            |  |  |
| 20   | R205C 8                     | 9             |    |                | 4 | 3 | _ | 20            |  |  |
|      |                             |               | 1  |                | 4 | 3 | 2 | 20            |  |  |
|      |                             |               |    | 2              | - | 3 | 2 | 20            |  |  |
| 25   | R205C 2                     | 9             |    |                | 4 | 3 | - | 20            |  |  |
|      |                             |               | 1  |                | 4 | 3 | 2 | 20            |  |  |
|      |                             |               |    | 2              | - | 3 | 2 | 20<br>20      |  |  |
| 30   | R205C 7                     | 9             |    |                | 4 | 3 | _ |               |  |  |
|      |                             |               | 1  |                | 4 | 3 | 2 | 20            |  |  |
|      |                             |               |    | 2              | - | 3 | 2 | 20            |  |  |
| 35   | R205C 3                     | 9             |    |                | 4 | 3 | - | 20            |  |  |
|      |                             |               | 1  |                | 4 | 3 | 2 | 20            |  |  |
|      |                             |               |    | 2              | - | 3 | 2 | 20            |  |  |
| 45   | R205C 4                     | 9             |    |                | 4 | 3 | _ | 20            |  |  |
|      |                             |               | 1  |                | 4 | 3 | 2 | 20            |  |  |
|      |                             |               |    | 2              | - | 3 | 2 | 20            |  |  |

| Size | Load ratings (N)   |                                |        | Load moments        | (Nm)                            |                 |                                |                                 |                 |
|------|--------------------|--------------------------------|--------|---------------------|---------------------------------|-----------------|--------------------------------|---------------------------------|-----------------|
|      |                    | + <b>↑</b><br>→←               |        |                     |                                 |                 |                                |                                 |                 |
|      | C <sub>50</sub> 1) | C <sub>100</sub> <sup>2)</sup> | Co     | M <sub>t50</sub> 1) | M <sub>t100</sub> <sup>2)</sup> | M <sub>t0</sub> | M <sub>L50</sub> <sup>1)</sup> | M <sub>L100</sub> <sup>2)</sup> | M <sub>LO</sub> |
| 15   | 11,500             | 9,100                          | 11,700 | 98                  | 78                              | 100             | 79                             | 63                              | 82              |
| 20   | 18,400             | 14,600                         | 19,600 | 190                 | 150                             | 210             | 160                            | 130                             | 170             |
| 25   | 27,500             | 21,800                         | 30,600 | 340                 | 270                             | 380             | 280                            | 220                             | 310             |
| 30   | 39,300             | 31,200                         | 42,200 | 590                 | 470                             | 640             | 450                            | 360                             | 490             |
| 35   | 54,100             | 42,900                         | 56,600 | 970                 | 770                             | 1,030           | 720                            | 570                             | 760             |
| 45   | 78,100             | 62,000                         | 83,000 | 1,790               | 1,420                           | 1,930           | 1,320                          | 1,050                           | 1,420           |

**1)** Dynamic load capacity and load moments based on a travel life of 50,000 m.



| Size | Dimensions | (mm)           |                |                |                   |                |                |                |                |                |      |                |                |
|------|------------|----------------|----------------|----------------|-------------------|----------------|----------------|----------------|----------------|----------------|------|----------------|----------------|
|      | Α          | A <sub>1</sub> | A <sub>2</sub> | Α <sub>3</sub> | B <sup>+0.5</sup> | B <sub>1</sub> | E <sub>1</sub> | E <sub>2</sub> | E <sub>8</sub> | E <sub>9</sub> | н    | H <sub>1</sub> | H <sub>2</sub> |
| 15   | 34.0       | 17.0           | 15.0           | 9.50           | 58.2              | 39.2           | 26.0           | 26.0           | 20.5           | 7.80           | 24.0 | 19.90          | 14.10          |
| 20   | 44.0       | 22.0           | 20.0           | 12.00          | 75.0              | 49.6           | 32.0           | 36.0           | 29.0           | 10.15          | 30.0 | 25.30          | 17.00          |
| 25   | 48.0       | 24.0           | 23.0           | 12.50          | 86.2              | 57.8           | 35.0           | 35.0           | 33.0           | 13.00          | 36.0 | 30.00          | 20.00          |
| 30   | 60.0       | 30.0           | 28.0           | 16.00          | 97.7              | 67.4           | 40.0           | 40.0           | 42.0           | 14.25          | 42.0 | 35.35          | 23.00          |
| 35   | 70.0       | 35.0           | 34.0           | 18.00          | 110.5             | 77.0           | 50.0           | 50.0           | 50.0           | 15.70          | 48.0 | 40.40          | 26.50          |
| 45   | 86.0       | 43.0           | 45.0           | 20.50          | 137.5             | 97.0           | 60.0           | 60.0           | 61.0           | 19.50          | 60.0 | 50.30          | 33.00          |

| Size | Dimensions     | (mm)           |                |                |                |                   |                |                       |                |       |                | Weight (kg) |
|------|----------------|----------------|----------------|----------------|----------------|-------------------|----------------|-----------------------|----------------|-------|----------------|-------------|
|      | K <sub>1</sub> | K <sub>2</sub> | K <sub>3</sub> | К <sub>4</sub> | N <sub>3</sub> | $N_{6}^{\pm 0.5}$ | S <sub>2</sub> | <b>S</b> <sub>5</sub> | S <sub>9</sub> | т     | V <sub>1</sub> | m           |
| 15   | 10.0           | 11.10          | 3.80           | 3.80           | 6.0            | 8.55              | M4             | 4.4                   | M2.5x5         | 60.0  | 5.4            | 0.16        |
| 20   | 13.8           | 13.80          | 5.65           | 5.65           | 7.5            | 10.0              | M5             | 6.0                   | M2.5x6         | 60.0  | 6.0            | 0.35        |
| 25   | 17.45          | 17.50          | 7.00           | 7.00           | 9.0            | 11.3              | M6             | 7.0                   | M3x6.5         | 60.0  | 7.5            | 0.50        |
| 30   | 20.0           | 20.70          | 7.25           | 7.25           | 12.0           | 12.0              | M8             | 9.0                   | M3x6.5         | 80.0  | 7.0            | 0.85        |
| 35   | 20.5           | 22.15          | 7.00           | 7.00           | 13.0           | 15.5              | M8             | 9.0                   | M3x6.5         | 80.0  | 8.0            | 1.27        |
| 45   | 27.3           | 29.50          | 10.50          | 10.50          | 18.0           | 17.0              | M10            | 14.0                  | M3x6.5         | 105.0 | 10.0           | 2.40        |

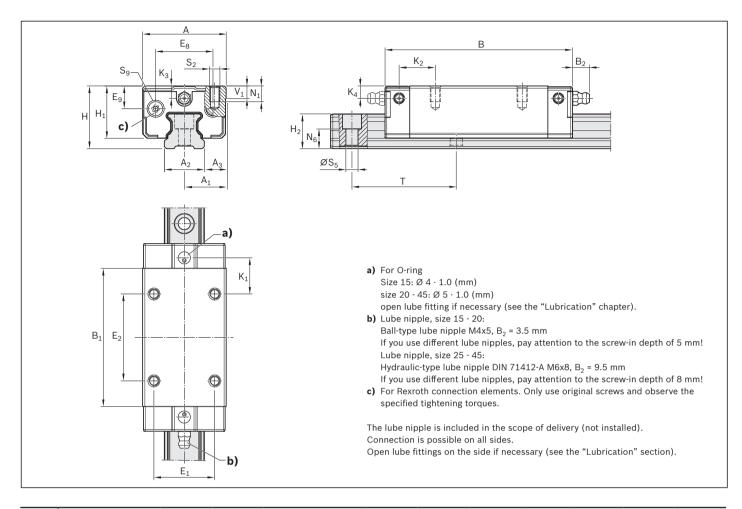
# SLS – slimline, long, standard height – R205D



#### **Dynamic characteristics**

| Travel speed:                       | v <sub>max</sub> = 3 m/s                 |
|-------------------------------------|------------------------------------------|
| Acceleration:                       | $a_{max} = 250 \text{ m/s}^2$            |
| (If $F_{comb} > 2.8 \cdot F_{pr}$ : | a <sub>max</sub> = 50 m/s <sup>2</sup> ) |

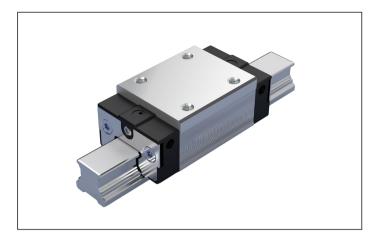
### Note


Can be used on all BSCL Ball Guide Rails KSE-...-SNS

### **Options and material numbers**

| Size | Ball Runner Block with size | Preload cla | SS |    | Accuracy cl | ass |   | Standard seal |  |  |
|------|-----------------------------|-------------|----|----|-------------|-----|---|---------------|--|--|
|      |                             | CO          | C1 | C2 | N           | н   | Р | Prelubricated |  |  |
| 15   | R205D 1                     | 9           |    |    | 4           | 3   | - | 20            |  |  |
|      |                             |             | 1  |    | 4           | 3   | 2 | 20            |  |  |
|      |                             |             |    | 2  | -           | 3   | 2 |               |  |  |
| 20   | R205D 8                     | 9           |    |    | 4           | 3   | - | 20            |  |  |
|      |                             |             | 1  |    | 4           | 3   | 2 |               |  |  |
|      |                             |             |    | 2  | -           | 3   | 2 | 20            |  |  |
| 25   | R205D 2                     | 9           |    |    | 4           | 3   | - | 20            |  |  |
|      |                             |             | 1  |    | 4           | 3   | 2 |               |  |  |
|      |                             |             |    | 2  | -           | 3   | 2 | 20<br>20      |  |  |
| 30   | R205D 7                     | 9           |    |    | 4           | 3   |   |               |  |  |
|      |                             |             | 1  |    | 4           | 3   | 2 |               |  |  |
|      |                             |             |    | 2  | -           | 3   | 2 | 20            |  |  |
| 35   | R205D 3                     | 9           |    |    | 4           | 3   | - | 20            |  |  |
|      |                             |             | 1  |    | 4           | 3   | 2 |               |  |  |
|      |                             |             |    | 2  | -           | 3   | 2 | 20            |  |  |
| 45   | R205D 4                     | 9           |    |    | 4           | 3   | - | 20            |  |  |
|      |                             |             | 1  |    | 4           | 3   | 2 |               |  |  |
|      |                             |             |    | 2  | -           | 3   | 2 | 20            |  |  |

| Size | Load ratings (N)              |                                |                | Load moments        | (Nm)                            |                 |                     |                                 |                 |  |  |
|------|-------------------------------|--------------------------------|----------------|---------------------|---------------------------------|-----------------|---------------------|---------------------------------|-----------------|--|--|
|      | -                             | ↓ <b>†</b><br>→←               |                |                     |                                 |                 |                     |                                 |                 |  |  |
|      | C <sub>50</sub> <sup>1)</sup> | C <sub>100</sub> <sup>2)</sup> | C <sub>0</sub> | M <sub>t50</sub> 1) | M <sub>t100</sub> <sup>2)</sup> | M <sub>t0</sub> | M <sub>L50</sub> 1) | M <sub>L100</sub> <sup>2)</sup> | M <sub>L0</sub> |  |  |
| 15   | 14,500                        | 11,500                         | 16,800         | 130                 | 100                             | 150             | 140                 | 110                             | 160             |  |  |
| 20   | 22,800                        | 18,100                         | 27,100         | 240                 | 190                             | 290             | 260                 | 210                             | 320             |  |  |
| 25   | 35,300                        | 28,000                         | 44,200         | 440                 | 350                             | 550             | 490                 | 390                             | 620             |  |  |
| 30   | 49,100                        | 39,000                         | 58,800         | 740                 | 590                             | 890             | 770                 | 610                             | 920             |  |  |
| 35   | 69,300                        | 55,000                         | 81,600         | 1,260               | 1,000                           | 1,480           | 1,300               | 1,030                           | 1,530           |  |  |
| 45   | 99,800                        | 79,200                         | 120,000        | 2,320               | 1,840                           | 2,780           | 2,380               | 1,890                           | 2,860           |  |  |


1) Dynamic load capacity and load moments based on a travel life of 50,000 m.



| Size | Dimensions | (mm)           |                |                |                   |                |                |                |                |                |      |                |                |
|------|------------|----------------|----------------|----------------|-------------------|----------------|----------------|----------------|----------------|----------------|------|----------------|----------------|
|      | A          | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | B <sup>+0.5</sup> | B <sub>1</sub> | E <sub>1</sub> | E <sub>2</sub> | E <sub>8</sub> | E <sub>9</sub> | н    | H <sub>1</sub> | H <sub>2</sub> |
| 15   | 34.0       | 17.0           | 15.0           | 9.50           | 72.6              | 53.6           | 26.0           | 26.0           | 20.5           | 7.8            | 24.0 | 19.90          | 14.10          |
| 20   | 44.0       | 22.0           | 20.0           | 12.00          | 91.0              | 65.6           | 32.0           | 50.0           | 29.0           | 10.15          | 30.0 | 25.30          | 17.00          |
| 25   | 48.0       | 24.0           | 23.0           | 12.50          | 107.9             | 79.5           | 35.0           | 50.0           | 33.0           | 13.0           | 36.0 | 30.00          | 20.00          |
| 30   | 60.0       | 30.0           | 28.0           | 16.00          | 119.7             | 89.4           | 40.0           | 60.0           | 42.0           | 14.25          | 42.0 | 35.35          | 23.00          |
| 35   | 70.0       | 35.0           | 34.0           | 18.00          | 139.0             | 105.5          | 50.0           | 72.0           | 50.0           | 15.7           | 48.0 | 40.40          | 26.50          |
| 45   | 86.0       | 43.0           | 45.0           | 20.50          | 174.0             | 133.5          | 60.0           | 80.0           | 61.0           | 19.5           | 60.0 | 50.30          | 33.00          |

| Size | Dimensions     | (mm)           |                |                |                |                 |                |                       |                |       |                | Weight (kg) |
|------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|-----------------------|----------------|-------|----------------|-------------|
|      | K <sub>1</sub> | K <sub>2</sub> | K <sub>3</sub> | К <sub>4</sub> | N <sub>3</sub> | $N_6^{\pm 0.5}$ | S <sub>2</sub> | <b>S</b> <sub>5</sub> | S <sub>9</sub> | т     | V <sub>1</sub> | m           |
| 15   | 17.20          | 18.30          | 3.80           | 3.80           | 6.0            | 8.55            | M4             | 4.4                   | M2.5x5         | 60.0  | 5.4            | 0.22        |
| 20   | 14.80          | 14.80          | 5.65           | 5.65           | 7.5            | 10.0            | M5             | 6.0                   | M2.5x6         | 60.0  | 6.0            | 0.46        |
| 25   | 20.80          | 20.85          | 7.00           | 7.00           | 9.0            | 11.3            | M6             | 7.0                   | M3x6.5         | 60.0  | 7.5            | 0.67        |
| 30   | 21.00          | 21.70          | 7.25           | 7.25           | 12.0           | 12.0            | M8             | 9.0                   | M3x6.5         | 80.0  | 7.0            | 1.11        |
| 35   | 23.75          | 25.40          | 7.00           | 7.00           | 13.0           | 15.5            | M8             | 9.0                   | M3x6.5         | 80.0  | 8.0            | 1.71        |
| 45   | 35.55          | 37.75          | 10.50          | 10.50          | 18.0           | 17.0            | M10            | 14.0                  | M3x6.5         | 105.0 | 10.0           | 3.24        |

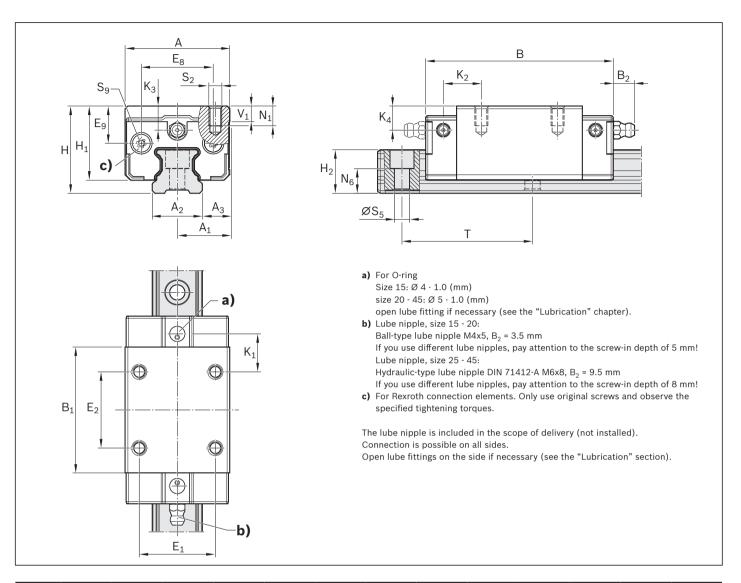
### SNH – slimline, normal, high – R205E



### **Dynamic characteristics**

| Travel speed:                       | v <sub>max</sub> = 3 m/s  |     |
|-------------------------------------|---------------------------|-----|
| Acceleration:                       | a <sub>max</sub> = 250 m  | /s² |
| (If $F_{comb} > 2.8 \cdot F_{pr}$ : | a <sub>max</sub> = 50 m/s | s²) |

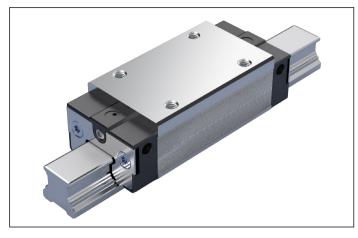
### Note


Can be used on all BSCL Ball Guide Rails KSE-...-SNS

### **Options and material numbers**

| Size | Ball Runner Block with size | Preload clas | 55 |    | Accuracy cl | ass |   | Standard seal |  |  |
|------|-----------------------------|--------------|----|----|-------------|-----|---|---------------|--|--|
|      |                             | C0           | C1 | C2 | N           | н   | Р | Prelubricated |  |  |
| 15   | R205E 1                     | 9            |    |    | 4           | 3   | - | 20            |  |  |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |  |  |
|      |                             |              |    | 2  | -           | 3   | 2 | 20            |  |  |
| 25   | R205E 2                     | 9            |    |    | 4           | 3   | _ | 20            |  |  |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |  |  |
|      |                             |              |    | 2  | -           | 3   | 2 | 20<br>20      |  |  |
| 30   | R205E 7                     | 9            |    |    | 4           | 3   | - |               |  |  |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |  |  |
|      |                             |              |    | 2  | -           | 3   | 2 | 20            |  |  |
| 35   | R205E 3                     | 9            |    |    | 4           | 3   | - | 20            |  |  |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |  |  |
|      |                             |              |    | 2  | -           | 3   | 2 | 20            |  |  |
| 45   | R205E 4                     | 9            |    |    | 4           | 3   | - | 20            |  |  |
|      |                             |              | 1  |    | 4           | 3   | 2 | 20            |  |  |
|      |                             |              |    | 2  | -           | 3   | 2 | 20            |  |  |

| Size | Load ratings (N)              |                                |                | Load moments                   | (Nm)                            |                 |                                |                                 |                 |
|------|-------------------------------|--------------------------------|----------------|--------------------------------|---------------------------------|-----------------|--------------------------------|---------------------------------|-----------------|
|      | -                             | + <b>↑</b><br>→+               |                |                                |                                 |                 |                                |                                 |                 |
|      | C <sub>50</sub> <sup>1)</sup> | C <sub>100</sub> <sup>2)</sup> | C <sub>0</sub> | M <sub>t50</sub> <sup>1)</sup> | M <sub>t100</sub> <sup>2)</sup> | M <sub>t0</sub> | M <sub>L50</sub> <sup>1)</sup> | M <sub>L100</sub> <sup>2)</sup> | M <sub>LO</sub> |
| 15   | 11,500                        | 9,100                          | 11,700         | 98                             | 78                              | 100             | 79                             | 63                              | 82              |
| 25   | 27,500                        | 21,800                         | 30,600         | 340                            | 270                             | 380             | 280                            | 220                             | 310             |
| 30   | 39,300                        | 31,200                         | 42,200         | 590                            | 470                             | 640             | 450                            | 360                             | 490             |
| 35   | 54,100                        | 42,900                         | 56,600         | 970                            | 770                             | 1,030           | 720                            | 570                             | 760             |
| 45   | 78,100                        | 62,000                         | 83,000         | 1,790                          | 1,420                           | 1,930           | 1,320                          | 1,050                           | 1,420           |


1) Dynamic load capacity and load moments based on a travel life of 50,000 m.



| Size | Dimensions | (mm)           |                |                |                   |                |                |                |                |                |      |                |                |
|------|------------|----------------|----------------|----------------|-------------------|----------------|----------------|----------------|----------------|----------------|------|----------------|----------------|
|      | A          | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | B <sup>+0.5</sup> | B <sub>1</sub> | E <sub>1</sub> | E <sub>2</sub> | E <sub>8</sub> | E <sub>9</sub> | н    | H <sub>1</sub> | H <sub>2</sub> |
| 15   | 34.0       | 17.0           | 15.0           | 9.50           | 58.2              | 39.2           | 26.0           | 26.0           | 20.5           | 11.8           | 28.0 | 23.90          | 14.10          |
| 25   | 48.0       | 24.0           | 23.0           | 12.50          | 86.2              | 57.8           | 35.0           | 35.0           | 33.0           | 17.0           | 40.0 | 34.00          | 20.00          |
| 30   | 60.0       | 30.0           | 28.0           | 16.00          | 97.7              | 67.4           | 40.0           | 40.0           | 42.0           | 17.25          | 45.0 | 38.35          | 23.00          |
| 35   | 70.0       | 35.0           | 34.0           | 18.00          | 110.5             | 77.0           | 50.0           | 50.0           | 50.0           | 22.7           | 55.0 | 47.40          | 26.50          |
| 45   | 86.0       | 43.0           | 45.0           | 20.50          | 137.5             | 97.0           | 60.0           | 60.0           | 61.0           | 29.5           | 70.0 | 60.30          | 33.00          |

| Size | Dimensions (mm) |                |                |                |                |                   |                |                       |                |       | Weight (kg)    |      |
|------|-----------------|----------------|----------------|----------------|----------------|-------------------|----------------|-----------------------|----------------|-------|----------------|------|
|      | K <sub>1</sub>  | K <sub>2</sub> | K <sub>3</sub> | К <sub>4</sub> | N <sub>3</sub> | $N_{6}^{\pm 0.5}$ | S <sub>2</sub> | <b>S</b> <sub>5</sub> | S <sub>9</sub> | Т     | V <sub>1</sub> | m    |
| 15   | 10.0            | 11.1           | 7.8            | 7.8            | 6.0            | 8.55              | M4             | 4.4                   | M2.5x5         | 60.0  | 5.4            | 0.20 |
| 25   | 17.45           | 17.5           | 11.0           | 11.0           | 9.0            | 11.3              | M6             | 7.0                   | M3x6.5         | 60.0  | 7.5            | 0.59 |
| 30   | 20.0            | 20.7           | 10.25          | 10.25          | 12.0           | 12.0              | M8             | 9.0                   | M3x6.5         | 80.0  | 7.0            | 0.95 |
| 35   | 20.5            | 22.15          | 14.0           | 14.0           | 13.0           | 15.5              | M8             | 9.0                   | M3x6.5         | 80.0  | 8.0            | 1.57 |
| 45   | 27.3            | 29.5           | 20.5           | 20.5           | 18.0           | 17.0              | M10            | 14.0                  | M3x6.5         | 105.0 | 10.0           | 3.03 |

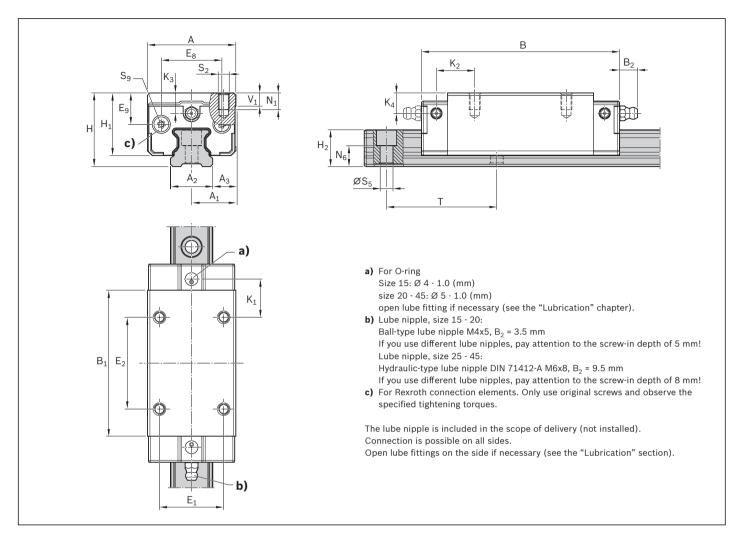
# SLH – slimline, long, high – R205F



### **Dynamic characteristics**

| Travel speed:                       | v <sub>max</sub> = 3 m/s      |
|-------------------------------------|-------------------------------|
| Acceleration:                       | $a_{max} = 250 \text{ m/s}^2$ |
| (If $F_{comb} > 2.8 \cdot F_{pr}$ : | a <sub>max</sub> = 50 m/s²)   |

### Note


Can be used on all BSCL Ball Guide Rails KSE-...-SNS

### **Options and material numbers**

| Size | Ball Runner Block with size | Preload class |    |    | Accuracy cl | ass | Standard seal |               |
|------|-----------------------------|---------------|----|----|-------------|-----|---------------|---------------|
|      |                             | C0            | C1 | C2 | N           | н   | P             | Prelubricated |
| 25   | R205F 2                     | 9             |    |    | 4           | 3   | -             | 20            |
|      |                             |               | 1  |    | 4           | 3   | 2             | 20            |
|      |                             |               |    | 2  | -           | 3   | 2             | 20            |
| 30   | R205F 7                     | 9             |    |    | 4           | 3   | -             | 20            |
|      |                             |               | 1  |    | 4           | 3   | 2             | 20            |
|      |                             |               |    | 2  | -           | 3   | 2             | 20            |
| 35   | R205F 3                     | 9             |    |    | 4           | 3   | -             | 20            |
|      |                             |               | 1  |    | 4           | 3   | 2             | 20            |
|      |                             |               |    | 2  | -           | 3   | 2             | 20            |
| 45   | R205F 4                     | 9             |    |    | 4           | 3   | -             | 20            |
|      |                             |               | 1  |    | 4           | 3   | 2             | 20            |
|      |                             |               |    | 2  | -           | 3   | 2             | 20            |

| Size | Load ratings (N)              |                                |                | Load moments (Nm)   |                                 |                 |                                |                                 |                 |  |  |
|------|-------------------------------|--------------------------------|----------------|---------------------|---------------------------------|-----------------|--------------------------------|---------------------------------|-----------------|--|--|
|      | ↓ t<br>→ ŢŢ ←                 |                                |                |                     |                                 |                 |                                |                                 |                 |  |  |
|      | C <sub>50</sub> <sup>1)</sup> | C <sub>100</sub> <sup>2)</sup> | C <sub>0</sub> | M <sub>t50</sub> 1) | M <sub>t100</sub> <sup>2)</sup> | M <sub>t0</sub> | M <sub>L50</sub> <sup>1)</sup> | M <sub>L100</sub> <sup>2)</sup> | M <sub>LO</sub> |  |  |
| 25   | 35,300                        | 28,000                         | 44,200         | 440                 | 350                             | 550             | 490                            | 390                             | 620             |  |  |
| 30   | 49,100                        | 39,000                         | 58,800         | 740                 | 590                             | 890             | 770                            | 610                             | 920             |  |  |
| 35   | 69,300                        | 55,000                         | 81,600         | 1,260               | 1,000                           | 1,480           | 1,300                          | 1,030                           | 1,530           |  |  |
| 45   | 99,800                        | 79,200                         | 120,000        | 2,320               | 1,840                           | 2,780           | 2,380                          | 1,890                           | 2,860           |  |  |

1) Dynamic load capacity and load moments based on a travel life of 50,000 m.



| Size | Dimensions | (mm)           |                |                |                   |                |                |                |                |       |      |                |                |
|------|------------|----------------|----------------|----------------|-------------------|----------------|----------------|----------------|----------------|-------|------|----------------|----------------|
|      | Α          | Α <sub>1</sub> | A <sub>2</sub> | Α <sub>3</sub> | B <sup>+0.5</sup> | B <sub>1</sub> | E <sub>1</sub> | E <sub>2</sub> | E <sub>8</sub> | E9    | н    | H <sub>1</sub> | H <sub>2</sub> |
| 25   | 48.0       | 24.0           | 23.0           | 12.50          | 107.9             | 79.5           | 35.0           | 50.0           | 33.0           | 17.00 | 40.0 | 34.00          | 20.00          |
| 30   | 60.0       | 30.0           | 28.0           | 16.00          | 119.7             | 89.4           | 40.0           | 60.0           | 42.0           | 17.25 | 45.0 | 38.35          | 23.00          |
| 35   | 70.0       | 35.0           | 34.0           | 18.00          | 139.0             | 105.5          | 50.0           | 72.0           | 50.0           | 22.70 | 55.0 | 47.40          | 26.50          |
| 45   | 86.0       | 43.0           | 45.0           | 20.50          | 174.0             | 133.5          | 60.0           | 80.0           | 61.0           | 29.50 | 70.0 | 60.30          | 33.00          |

| Size | Dimensions     | Dimensions (mm) |                |                |                |                                |                |                       |                |       |                |      |  |  |
|------|----------------|-----------------|----------------|----------------|----------------|--------------------------------|----------------|-----------------------|----------------|-------|----------------|------|--|--|
|      | K <sub>1</sub> | K <sub>2</sub>  | K <sub>3</sub> | K <sub>4</sub> | N <sub>3</sub> | N <sub>6</sub> <sup>±0.5</sup> | S <sub>2</sub> | <b>S</b> <sub>5</sub> | S <sub>9</sub> | Т     | V <sub>1</sub> | m    |  |  |
| 25   | 20.80          | 20.85           | 11.00          | 11.00          | 9.0            | 11.3                           | M6             | 7.0                   | M3x6.5         | 60.0  | 7.5            | 0.79 |  |  |
| 30   | 21.00          | 21.70           | 10.25          | 10.25          | 12.0           | 12.0                           | M8             | 9.0                   | M3x6.5         | 80.0  | 7.0            | 1.31 |  |  |
| 35   | 23.75          | 25.40           | 14.00          | 14.00          | 13.0           | 15.5                           | M8             | 9.0                   | M3x6.5         | 80.0  | 8.0            | 2.11 |  |  |
| 45   | 35.55          | 37.75           | 20.50          | 20.50          | 18.0           | 17.0                           | M10            | 14.0                  | M3x6.5         | 105.0 | 10.0           | 4.11 |  |  |

# Ball Guide Rail ordering example

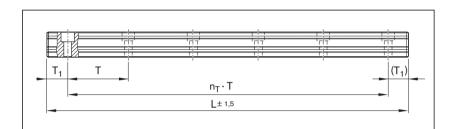
#### **Ordering Ball Guide Rails**

The material number is composed of the code numbers for the individual options. Each option has its own code number.

| BSCL Ball Gu | ide Rail SNS                           | R2055 | 7 | 0 | 3 | 31 | ,xx mm |
|--------------|----------------------------------------|-------|---|---|---|----|--------|
| Size         | <b>1</b> = size 15                     |       | - |   |   |    |        |
|              | <b>8</b> = size 20                     |       |   |   |   |    |        |
|              | <b>2</b> = size 25                     |       |   |   |   |    |        |
|              | <b>7</b> = size 30                     |       |   |   |   |    |        |
|              | <b>3</b> = size 35                     |       |   |   |   |    |        |
|              | <b>4</b> = size 45                     |       |   |   |   |    |        |
| Cover        | <b>0</b> = plastic mounting hole plugs |       |   |   |   |    |        |
| Accuracy     | 4 = accuracy class N                   |       |   |   |   |    |        |
|              | 3 = accuracy class H                   |       |   |   |   |    |        |
|              | $2 = \operatorname{accuracy class P}$  |       |   |   |   |    |        |
| Version      | 3x = number of partial sections        |       |   |   |   |    |        |
|              | 51 = factory length                    |       |   |   |   |    |        |
| Length       | <b>xx</b> = rail length in mm          |       |   |   |   |    |        |

#### **BSCL Ball Guide Rail type key**

| BALL GUIDE RAIL CS | KSE | - | 0 | 3 | 0 | - | S | Ν | S | - | н | - | м | Α | - | Α | Κ |
|--------------------|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|                    |     |   | 1 |   |   |   |   | 2 |   |   | 3 |   | 4 | L |   | Ę | 5 |


| 1 Size  |             | 2 Format |                                   |
|---------|-------------|----------|-----------------------------------|
| Feature | Designation | Feature  | Designation                       |
| 015     | Size 15     | SNS      | Slimline, normal, standard height |
| 020     | Size 20     |          | ·                                 |
| 025     | Size 25     |          |                                   |
| 030     | Size 30     |          |                                   |
| 035     | Size 35     |          |                                   |
| 045     | Size 45     |          |                                   |

| 3 Accuracy class | 5           | 4 Mounting |                     |  |  |
|------------------|-------------|------------|---------------------|--|--|
| Feature          | Designation | Feature    | Designation         |  |  |
| Ν                | Normal      | MA         | Mounting from above |  |  |
| Н                | High        |            |                     |  |  |
| Ρ                | Precision   |            |                     |  |  |

| 5     | Cover |                                  |
|-------|-------|----------------------------------|
| Featu | ire   | Designation                      |
| AK    |       | With plastic mounting hole plugs |

# **Recommended rail lengths**

Ball Guide Rails can be manufactured in principal in any length. However, if possible, recommended rail lengths should be used at which the rails are cut in the middle between two mounting holes. Recommended rail lengths are more cost effective. The recommended rail length (preferred length) can be calculated as follows, or determined alternatively in the online configurators.



| L              | = | Recommended rail length | (mm) |
|----------------|---|-------------------------|------|
| $L_{W}$        | = | Desired length of rail  | (mm) |
| Т              | = | Pitch                   | (mm) |
| $\rm T_{1S}$   | = | Preferred dimension     | (mm) |
| n <sub>B</sub> | = | Number of holes         | (-)  |
| n <sub>B</sub> | = | Number of pitches       | (-)  |

#### a) Calculated from desired length:

### b) Calculated from desired number of holes:

Г

$$L = n_B \cdot T - 4 mm$$

c) Calculated from desired

number of divisions:

 $L = n_T \cdot T + 2 \cdot T_{1S}$ 

 $L = \left(\frac{L_W}{T}\right) \cdot T - 4$ \* Round up quotient L<sub>w</sub>/T to the nearest whole number!

### Ordering example: one-piece rail of recommended rail length (up to L<sub>max</sub>):

- Ball Guide Rail SNS
- ► Size 30
- Accuracy class H
- ▶ One-piece
- Calculated rail length 1676 mm, (20 · T, preferred dimension  $T_{1S}$  = 38 mm; number of holes  $n_B = 21$ )

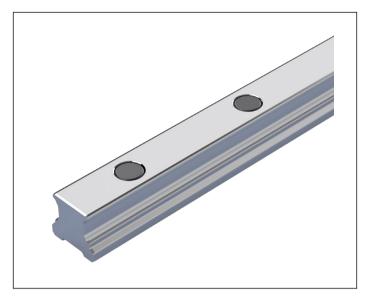
### **Ordering data**

Material number, rail length (mm)  $\rm T^{}_{1}$  /  $\rm n^{}_{T}\cdot\rm T$  /  $\rm T^{}_{1}$  (mm)

R2055 703 31, 1676 mm 38 / 20 · 80 / 38 mm

### Ordering example: multi-piece rail of recommended rail length (longer than L<sub>max</sub>):

- Ball Guide Rail SNS
- ► Size 30
- Accuracy class H
- Calculated rail length 5116 mm, two partial sections (63  $\cdot$  T, preferred dimension T<sub>1S</sub> = 38 mm; number of holes  $n_B = 64$ )


### **Ordering data**

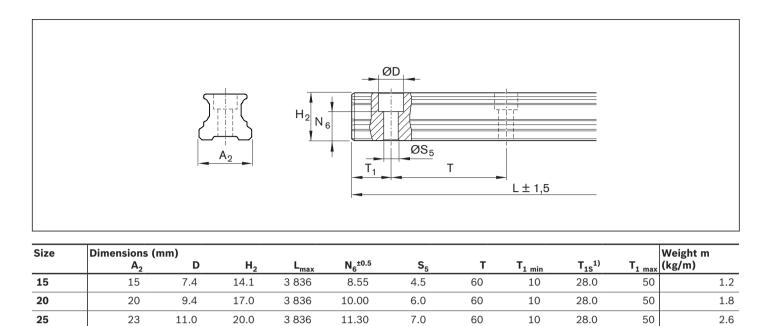
Material number with number of partial sections, rail length (mm)  $T_1 / n_T \cdot T / T_1$  (mm)

### R2055 703 32, 5116 mm 38 / 63 · 80 / 38 mm

In the case of rail lengths above L<sub>max</sub> partial sections approved by Rexroth are joined together.

# SNS – with plastic mounting hole plugs – R2055




Ball Guide Rails KSE-...-SNS For mounting from above with plastic mounting hole plugs

#### Notes

- Observe the notes for mounting!
   Please request the "Mounting instructions for Ball Rail Systems."
- To avoid damage to the Runner Block, the mounting holes of the Guide Rails must be sealed with plastic mounting hole plugs.
- Plastic mounting hole plugs included in scope of supply.

| Size | Ball Guide Rail<br>with size | Accuracy<br>class |   |   | Number of p<br>Rail length L |           | Hole spacing T<br>(mm) | Recommended rail length in accordance<br>with formula L = n <sub>B</sub> · T – 4 mm |
|------|------------------------------|-------------------|---|---|------------------------------|-----------|------------------------|-------------------------------------------------------------------------------------|
|      |                              | N                 | H | Р | One-piece                    | Composite |                        | Maximum number of holes n <sub>B</sub>                                              |
| 15   | R2055 10                     | 4                 | 3 | 2 | 31,                          | 3.,       | 60                     | 64                                                                                  |
| 20   | R2055 80                     | 4                 | 3 | 2 | 31,                          | 3.,       | 60                     | 64                                                                                  |
| 25   | R2055 20                     | 4                 | 3 | 2 | 31,                          | 3.,       | 60                     | 64                                                                                  |
| 30   | R2055 70                     | 4                 | 3 | 2 | 31,                          | 3.,       | 80                     | 48                                                                                  |
| 35   | R2055 30                     | 4                 | 3 | 2 | 31,                          | 3.,       | 80                     | 48                                                                                  |
| 45   | R2055 40                     | 4                 | 3 | 2 | 31,                          | 3.,       | 105                    | 36                                                                                  |

#### **Options and material numbers**



| 30 | 28 | 15.0 | 23.0 | 3 836 | 12.00 | 9.0  | 80  | 12 | 38.0 |
|----|----|------|------|-------|-------|------|-----|----|------|
| 35 | 34 | 15.0 | 26.5 | 3 836 | 15.50 | 9.0  | 80  | 12 | 38.0 |
| 45 | 45 | 20.0 | 33.0 | 3 776 | 17.00 | 14.0 | 105 | 16 | 50.5 |
|    |    |      |      |       |       |      |     |    |      |

**1)** Preferred dimension  $T_{1S}$  with tolerances ± 0.75 is recommended.

# Overview of factory lengths

| Size | Accuracy class |            |            |
|------|----------------|------------|------------|
|      | Ν              | Н          | Р          |
| 15   | R205510451     | R205510351 | R205510251 |
| 20   | R205580451     | R205580351 | R205580251 |
| 25   | R205520451     | R205520351 | R205520251 |
| 30   | R205570451     | R205570351 | R205570251 |
| 35   | R205530451     | R205530351 | R205530251 |
| 45   | R205540451     | R205540351 | R205540251 |

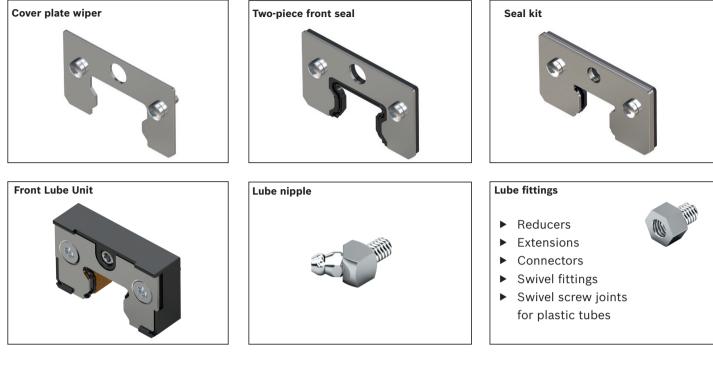
Factory lengths are Guide Rails without end machining which are only available in four-meter sections. A factory length has an overall length of approx. 4,150 mm with a usable length (good length) of at least 3,600 mm in one piece of the respective accuracy class. The maximum good length is 4,150 mm. The good length is specified on the packaging and charged upon delivery.

### Note

- When ordering factory lengths, the plastic mounting hole plugs must be ordered separately. See the chapter entitled "Accessories".
- ► The packaging of Guide Rails should only be opened with a suitable tool. Bosch Rexroth provides an appropriate tool for this purpose under part number R320105175.

68

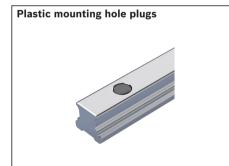
68


89

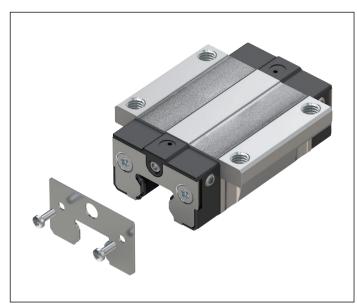
3.6

5.1

7.7

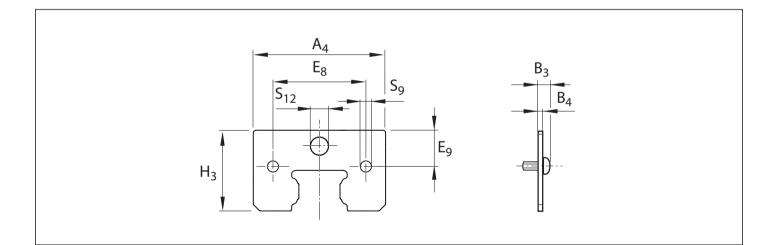

# Overview - accessories










# Cover plate wiper

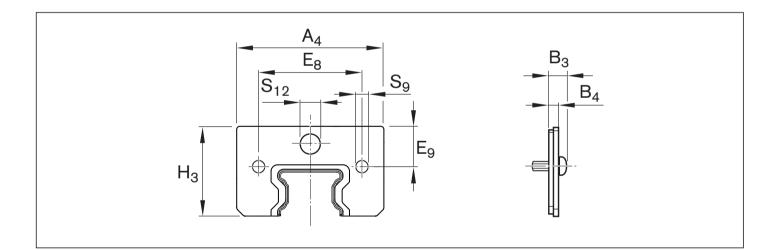


- ▶ Material: Corrosion-resistant steel as per EN 10088
- Design: bright
- Precision design with a maximum gap dimension of 0.1 to 0.3 mm

- The seal kit must be used when combining the cover plate wiper with the front seal. See seal kit.
- The fastening screws are included.
- When mounting, make sure that there is a uniform gap between the Ball Guide Rail and the cover plate wiper.
- Observe the minimum screw-in depth for the end-face lube fitting.
- Observe the mounting instructions.

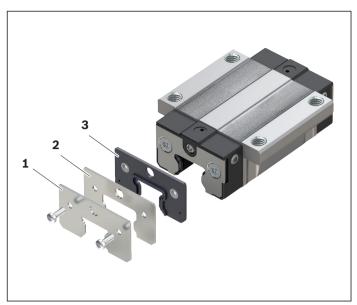


| Size | Material number | Dimensions (n  | nm)            |                |                |                |                |                |                 | Weight m |
|------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------|
|      |                 | A <sub>4</sub> | B <sub>3</sub> | B <sub>4</sub> | E <sub>8</sub> | E <sub>9</sub> | H <sub>3</sub> | S <sub>9</sub> | S <sub>12</sub> | (g)      |
| 15   | R205Z 100 00    | 31.5           | 3.0            | 1.0            | 20.5           | 7.40           | 19.30          | 2.8            | 4.3             | 4.8      |
| 20   | R205Z 800 00    | 42.2           | 3.0            | 1.0            | 29.0           | 8.70           | 23.40          | 2.8            | 5.0             | 7.5      |
| 25   | R205Z 200 00    | 46.0           | 3.5            | 1.0            | 33.0           | 11.35          | 27.85          | 2.8            | 7.0             | 9.8      |
| 30   | R205Z 700 00    | 58.0           | 3.5            | 1.0            | 42.0           | 12.40          | 32.90          | 3.5            | 7.0             | 13.9     |
| 35   | R205Z 300 00    | 68.0           | 4.0            | 1.5            | 50.0           | 14.20          | 38.30          | 3.5            | 7.0             | 27.2     |
| 45   | R205Z 400 00    | 83.3           | 4.0            | 1.5            | 61.0           | 17.70          | 48.00          | 3.5            | 7.0             | 39.9     |


# Front seal

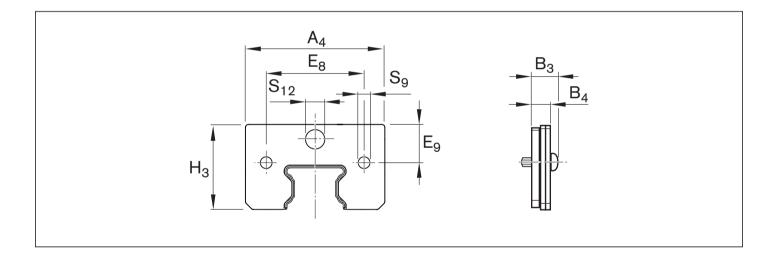


### Two sections


- Material: Corrosion-resistant steel according to DIN EN 10088 with plastic seal ring
- Design: bright

- The fastening screws are included.
- Observe the minimum screw-in depth for the end-face lube fitting.
- The seal kit must be used when combining the front seal with the cover plate wiper.
   See seal kit.
- Observe the mounting instructions.




| Size | Material number | Dimensions (n  | nm)            |                |                |                |                |                |                 | Weight m |
|------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------|
|      |                 | A <sub>4</sub> | B <sub>3</sub> | B <sub>4</sub> | E <sub>8</sub> | E <sub>9</sub> | H <sub>3</sub> | S <sub>9</sub> | S <sub>12</sub> | (g)      |
| 15   | R205Z 110 00    | 31.5           | 4.5            | 2.5            | 20.5           | 7.40           | 19.30          | 2.8            | 4.3             | 5.2      |
| 20   | R205Z 810 00    | 42.2           | 4.5            | 2.5            | 29.0           | 8.70           | 23.40          | 2.8            | 5.0             | 7.9      |
| 25   | R205Z 210 00    | 46.0           | 5.0            | 2.5            | 33.0           | 11.35          | 27.85          | 3.5            | 7.0             | 11.4     |
| 30   | R205Z 710 00    | 58.0           | 5.0            | 2.5            | 42.0           | 12.40          | 32.90          | 3.5            | 7.0             | 16.2     |
| 35   | R205Z 310 00    | 68.0           | 5.5            | 3.0            | 50.0           | 14.20          | 38.30          | 3.5            | 7.0             | 28.5     |
| 45   | R205Z 410 00    | 83.3           | 5.5            | 3.0            | 61.0           | 17.70          | 48.00          | 3.5            | 7.0             | 42.6     |

# Seal kit



- **1** Cover plate wiper
- 2 Reinforcing plate
- 3 Two-piece front seal

- The seal kit is recommended when combining the cover plate wiper with the front seal.
- The fastening screws are included.
- Observe the minimum screw-in depth for the end-face lube fitting.
- Observe the mounting instructions.



| Size | Material number | Dimensions (n  | nm)            |                       |                |                |                |                |                 | Weight m |
|------|-----------------|----------------|----------------|-----------------------|----------------|----------------|----------------|----------------|-----------------|----------|
|      |                 | A <sub>4</sub> | B <sub>3</sub> | <b>B</b> <sub>4</sub> | E <sub>8</sub> | E <sub>9</sub> | H <sub>3</sub> | S <sub>9</sub> | S <sub>12</sub> | (g)      |
| 15   | R205Z 190 10    | 31.5           | 5.5            | 3.5                   | 20.5           | 7.40           | 19.30          | 2.8            | 4.3             | 9.0      |
| 20   | R205Z 890 10    | 42.2           | 5.5            | 3.5                   | 29.0           | 8.70           | 23.40          | 2.8            | 5.0             | 14.4     |
| 25   | R205Z 290 10    | 46.0           | 6.0            | 3.5                   | 33.0           | 11.35          | 27.85          | 2.8            | 7.0             | 19.6     |
| 30   | R205Z 790 10    | 58.0           | 6.0            | 3.5                   | 42.0           | 12.40          | 32.90          | 3.5            | 7.0             | 28.5     |
| 35   | R205Z 390 10    | 68.0           | 7.0            | 4.5                   | 50.0           | 14.20          | 38.30          | 3.5            | 7.0             | 54.1     |
| 45   | R205Z 490 10    | 83.3           | 7.0            | 4.5                   | 61.0           | 17.70          | 48.00          | 3.5            | 7.0             | 80.9     |

# Front Lube Units



### For extended travel distances without relubrication

#### Advantages for mounting and operation

- ▶ Ball Runner Block only needs initial lubrication with grease
- Front Lube Units on both sides of the Ball Runner Block
- Low lubricant loss
- Reduced oil consumption
- No lubrication lines
- ▶ Max. operating temperature 60 °C
- Lube fitting on the end-face of the Front Lube Unit is suitable for lubricating the Ball Runner Block with grease.

#### Note for mounting

- The required mounting accessories (coated screws, seals and lube nipples) are supplied along with the units.
- Mount a Front Lube Unit on both sides of the Ball Runner Block!
- Observe the mounting instructions.

#### Notes:

Material: special plastic

The Front Lube Units are already filled with oil (Mobile SHC 639) and can be installed after the basic lubrication of the Ball Runner Block.

Rexroth recommends replacing the Front Lube Units every 3 years at the latest and re-lubricating the Ball Runner Block before mounting the new Front Lube Unit.

#### **Relubrication of the Ball Runner Blocks**

In clean operating environments, the Ball Runner Blocks can be relubricated with grease (Dynalub 510) at the end-face. Relubrication of the Ball Runner Blocks **with grease lubricant** see the "Lubrication" chapter

An initial lubrication of the Ball Runner Blocks with grease lubricant is required before mounting the Front Lube Units! See section "Lubrication".

A If other types of lubricant oil are used, consider the compatibility of the lubricants and the travel distance!

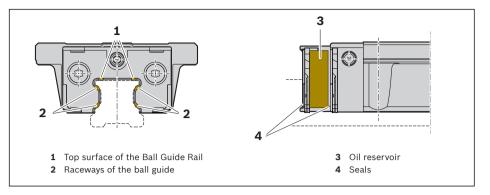
A If other types of lubricants are used, this may lead to a reduction in the lubrication

intervals, the achievable travel in short-stroke applications, and the load capacities. Possible chemical interactions

between the plastic materials, lubricants and preservative oils must also be taken into account.

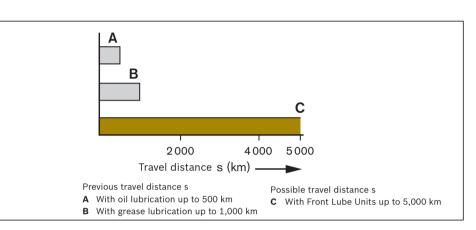
The recommended lubrication intervals depend on environmental factors, load and load type.

Examples of environmental factors include swarf, mineral abrasion (or similar), solvent and temperature.


Examples of loads and stress types are oscillations, shocks and tilting.

A The conditions of use are unknown to the manufacturer. Only the user's own trials or accurate monitoring can yield safety across lubrication intervals.

A Do not use water-based coolant/lubricant on the Ball Guide Rails and Ball Runner Block!

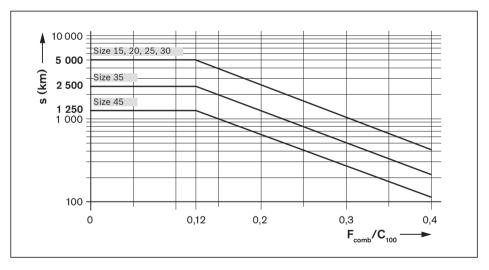

### Lubricant distribution

Due to the special design of the lubricant distribution, lubrication occurs primarily where it is needed: directly on the raceways and the top surfaces of the Ball Guide Rails.



#### **Travel distance**

| Size | Possible travel distance s<br>with Front Lube Units<br>(km) |
|------|-------------------------------------------------------------|
| 15   | 5 000                                                       |
| 20   | 5 000                                                       |
| 25   | 5 000                                                       |
| 30   | 5 000                                                       |
| 35   | 2 500                                                       |
| 45   | 1 250                                                       |



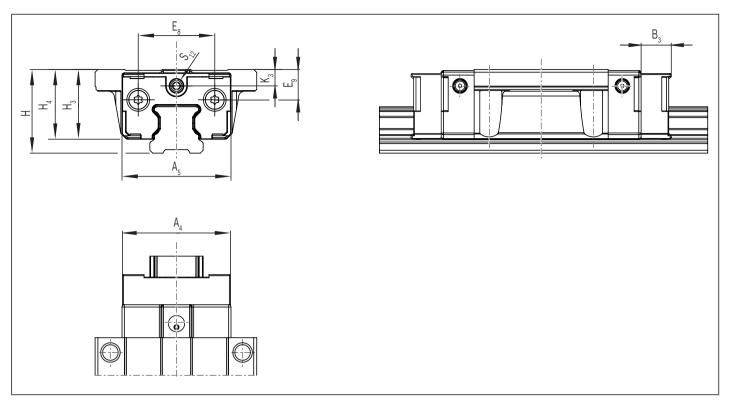

### Load-dependent relubrication intervals for Ball Runner Blocks with Front Lube Units

### This applies to the following conditions:

- Ball Runner Block lubricants: Dynalub 510 (NLGI 2 grease) or, alternatively, Castrol Longtime PD 2 (NLGI 2 grease)
- Front Lube Units lubricant: Mobil SHC 639 (synthetic oil)
- Maximum speed:
  - $v_{max} = 2 m/s$
- No media pressurization
- Standard seals
- Ambient temperature:

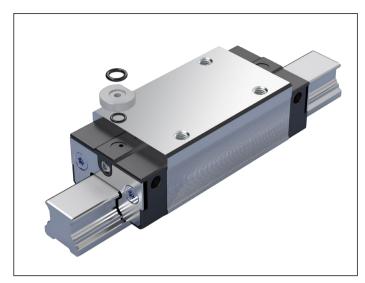
T = 20 - 30 °C




### Definition $F_{comb}/C_{100}$

The load ratio  $\rm F_{comb}/C_{100}$  is the quotient of the equivalent dynamic combined load on the bearing  $\rm F_{comb}$  (considering the internal preloading force  $\rm F_{pr}$ ) and the dynamic load capacity  $\rm C_{100}.$ 

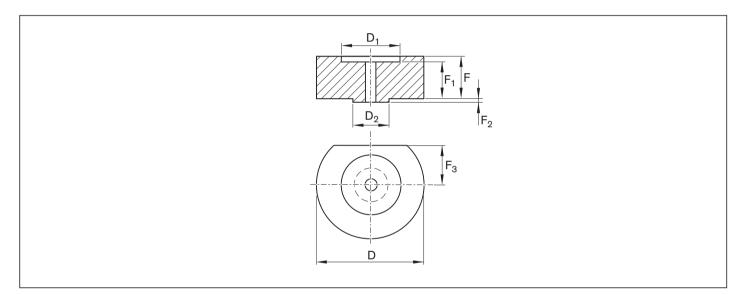
## Кеу


 $C_{100}$  = dynamic load capacity (N)  $F_{comb}$  = dynamic combined equivalent load on bearing (N)  $F_{comb}/C_{100}$  = load ratio (-) s = relubrication interval as travel distance (km)

# Front Lube Units



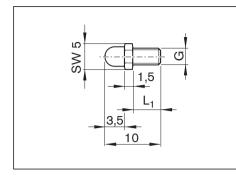
| Size | Material number | Dimensions (n  | nm)            |                |                |      |                |                |                 | Weight m |
|------|-----------------|----------------|----------------|----------------|----------------|------|----------------|----------------|-----------------|----------|
|      |                 | A <sub>4</sub> | B <sub>3</sub> | E <sub>8</sub> | E <sub>9</sub> | н    | H <sub>3</sub> | K <sub>3</sub> | S <sub>12</sub> | (g)      |
| 15   | R205Z 125 00    | 31.7           | 11.5           | 20.5           | 7.90           | 24.1 | 19.90          | 1.95           | M4              | 9.6      |
| 20   | R205Z 825 00    | 42.5           | 12.5           | 29.0           | 10.25          | 30.1 | 25.10          | 2.50           | M4              | 17.1     |
| 25   | R205Z 225 00    | 46.6           | 13.0           | 33.0           | 11.35          | 36.1 | 29.90          | 4.50           | M6              | 23.8     |
| 30   | R205Z 725 00    | 58.2           | 13.5           | 42.0           | 12.60          | 42.1 | 35.15          | 5.60           | M6              | 33.8     |
| 35   | R205Z 325 00    | 68.6           | 14.0           | 50.0           | 15.80          | 48.1 | 40.40          | 7.10           | M6              | 52.8     |
| 45   | R205Z 425 00    | 83.5           | 14.5           | 61.0           | 19.60          | 60.1 | 49.90          | 10.60          | M6              | 78.3     |


# Lubrication adapter



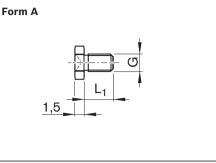
### For oil and grease lubrication from above with high Ball Runner Blocks SNH R205E or SLH R205F

- Material: Plastic
- Quantity per pack: 1 pc.


- O-rings are provided.
- Before mounting, use a heated metal tip to open the lube hole in the Ball Runner Block.
- For more details, see the "Lubrication and maintenance" chapter.



| Size | Material number | Dimensions (mm)<br>D | )<br>D <sub>1</sub> | D <sub>2</sub> | F   | F <sub>1</sub> | $F_2$ |      | Weight m<br>(g) |
|------|-----------------|----------------------|---------------------|----------------|-----|----------------|-------|------|-----------------|
| 15   | R1621 100 05    | 12                   | 6.2                 | 3.4            | 3.7 | 3.1            | 0.5   | 3.20 | 0.5             |
| 25   | R1621 200 05    | 15                   | 7.2                 | 4.4            | 3.8 | 3.2            | 0.5   | 5.85 | 0.9             |
| 30   | R1621 700 05    | 16                   | 7.2                 | 4.4            | 2.8 | 2.2            | 0.5   | 6.10 | 0.7             |
| 35   | R1621 300 05    | 18                   | 7.2                 | 4.4            | 6.8 | 6.2            | 0.5   | 6.80 | 2.2             |
| 45   | R1621 400 05    | 20                   | 7.2                 | 4.4            | 9.8 | 9.2            | 0.5   | 8.30 | 4.1             |

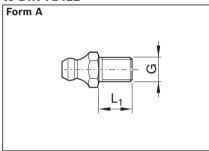

# Lube nipple, lube fittings

#### Ball-type lube nipple

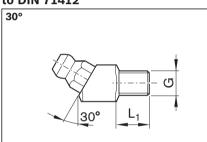


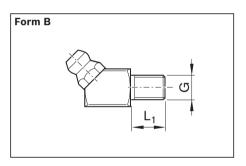
| Material<br>number |              | Dimensions (r | Weight<br>(g) |     |
|--------------------|--------------|---------------|---------------|-----|
| _                  | number       | G             | <b>L</b> 1    | (8) |
|                    | R3417 006 01 | M4            | 5             | 0.5 |

### Funnel-type lube nipple according to DIN 3405




| Material     | Dimensions (m | Weight         |     |
|--------------|---------------|----------------|-----|
| number       | G             | L <sub>1</sub> | (g) |
| R3417 069 09 | M4            | 5              | 0.3 |


Form B


| Material     | Dimension | Weight |     |
|--------------|-----------|--------|-----|
| number       | G         | $L_1$  | (g) |
| R3417 070 09 | M4        | 5      | 1.5 |

### Hydraulic-type lube nipple according to DIN 71412



### Hydraulic-type lube nipple according to DIN 71412





| Material       | Dimensions | Weight |     |
|----------------|------------|--------|-----|
| number         | G          | $L_1$  | (g) |
| R3417 008 02   | M6         | 8      | 2.6 |
| R3417 016 021) |            |        |     |

| Material     | Dimension | Weight |     |
|--------------|-----------|--------|-----|
| number       | G         | $L_1$  | (g) |
| R3417 023 02 | M6        | 8      | 7.4 |

8,5

-0-

5,5

4,5

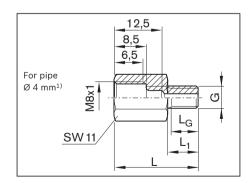
M6x0,75

SW 9

| Material     | Dimensions | Weight         |     |
|--------------|------------|----------------|-----|
| number       | G          | L <sub>1</sub> | (g) |
| R3417 007 02 | M6         | 8              | 7.4 |

1) Lube nipple Resist NR II made of corrosion-resistant steel according to DIN EN 10088

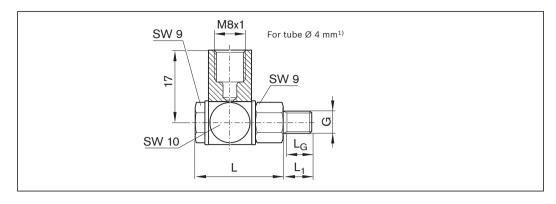
Connectors


For pipe

Ø 2.5 mm<sup>1)</sup>

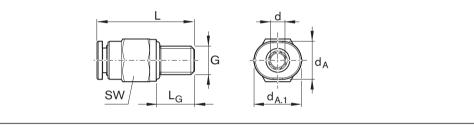
### Lube fittings




| Material     | Dimen | sions          | (mm)    | Weight | Ma | terial     | Dime | ension | s (mi          | n)             | Wei | ght |
|--------------|-------|----------------|---------|--------|----|------------|------|--------|----------------|----------------|-----|-----|
| number       | G     | L <sub>1</sub> | $L_{G}$ | (g)    | nu | nber       | G    | L      | L <sub>1</sub> | L <sub>G</sub> | (g) | -   |
| R3455 030 34 | M6    | 8              | 6.5     | 7.5    | R3 | 455 030 38 | M6   | 15.5   | 8              | 6.5            |     | 4.1 |

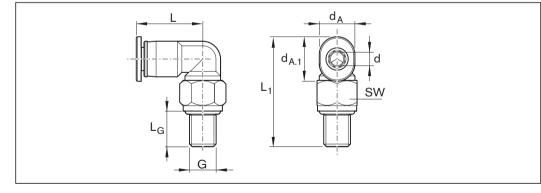


| Material     | Dime | ensio | Weight |         |     |
|--------------|------|-------|--------|---------|-----|
| number       | G    | L     | $L_1$  | $L_{G}$ | (g) |
| R3455 030 37 | M6   | 22    | 8      | 6.5     | 8.8 |


1) For connections according to DIN 2353 (solderless tube fittings)

#### **Swivel fittings**




| Material number | Dimensions (mm) |      |                |                | Weight |
|-----------------|-----------------|------|----------------|----------------|--------|
|                 | G               | L    | L <sub>1</sub> | L <sub>G</sub> | (g)    |
| R3417 018 09    | M6              | 21.5 | 8              | 6.5            | 18.6   |

### Straight connectors<sup>2)</sup> for plastic tubes and metal pipes



| Material number | Dimensions     | Dimensions (mm)  |               |    |    |                |                 |     |
|-----------------|----------------|------------------|---------------|----|----|----------------|-----------------|-----|
|                 | d <sub>A</sub> | d <sub>A.1</sub> | <b>d</b> ±0.1 | G  | L  | L <sub>G</sub> | SW              | (g) |
| R3417 071 09    | 6.0            | 7                | 3             | M4 | 16 | 5              | 6 <sup>3)</sup> | 1.4 |
| R3417 035 09    | 8.5            | 10               | 4             | M6 | 21 | 8              | 9               | 4.6 |
| R3417 036 09    | 10.0           | 12               | 6             | M6 | 22 | 8              | 10              | 4.8 |

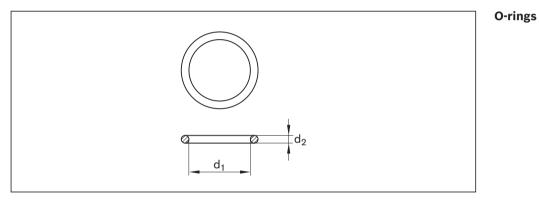
# Elbow plug-in connections rotatable<sup>2)</sup> for plastic tubes and metal pipes



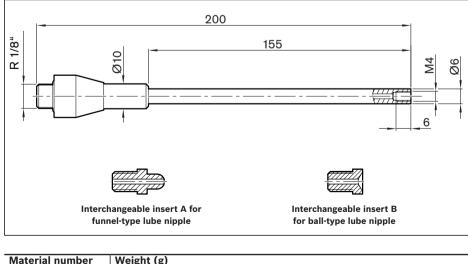
| Material number | Dimension      | Dimensions (mm)  |               |    |    |    |                |                 | Weight |
|-----------------|----------------|------------------|---------------|----|----|----|----------------|-----------------|--------|
|                 | d <sub>A</sub> | d <sub>A.1</sub> | <b>d</b> ±0.1 | G  | L  | L1 | L <sub>G</sub> | SW              | (g)    |
| R3417 072 09    | 6.0            | 7                | 3             | M4 | 11 | 19 | 5              | 6 <sup>3)</sup> | 1.7    |
| R3417 038 09    | 8.0            | 10               | 4             | M6 | 20 | 25 | 8              | 9               | 5.1    |
| R3417 039 09    | 10.5           | 12               | 6             | M6 | 20 | 25 | 8              | 9               | 6.1    |

1) For connections according to DIN 2353 (solderless tube fittings)

2) Maximum lubricant pressure: 30 bar (exerting slow pressure with manual grease gun)


3) Maximum tightening torque:  $M_A = 0.5 \text{ Nm}$ 

# Lube fittings, O-rings




Plastic tube Ø 3 mm for lube fittings

| Material number | Dimensions      | Weight          |            |      |
|-----------------|-----------------|-----------------|------------|------|
|                 | external Ø (mm) | internal Ø (mm) | Length (m) | (kg) |
| R3499 287 00    | 3               | 1.7             | 50         | 0.4  |



| Material number | d <sub>1</sub> x d <sub>2</sub> (mm) |
|-----------------|--------------------------------------|
| R3411 130 01    | 4 x 1.0                              |
| R3411 131 01    | 5 x 1.0                              |
| R3411 003 01    | 6 x 1.5                              |

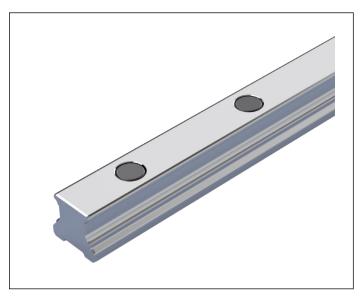


| Material number | Weight (g) |
|-----------------|------------|
| R345503106      | 158        |

Nozzle pipe

For manual grease guns. For the lubrication of funnel-type and

ball-type lube nipples for size 15 and 20 BSCL Ball Runner Blocks. Scope of delivery:


1 x nozzle pipe

1 x interchangeable insert A for funnel-type lube nipple

1 x interchangeable insert B

for ball-type lube nipple

# Plastic mounting hole plugs



To avoid damage to the Runner Block, the mounting holes of the Guide Rails must be sealed with plastic mounting hole plugs.

| Size | Material numbers of individual cap | Number of mounting hole plugs<br>required for a factory length | Weight (g) |
|------|------------------------------------|----------------------------------------------------------------|------------|
| 15   | R1605 100 80                       | 67                                                             | 0.05       |
| 20   | R1605 800 80                       | 67                                                             | 0.10       |
| 25   | R1605 200 80                       | 67                                                             | 0.30       |
| 30   | R1605 300 80                       | 50                                                             | 0.60       |
| 35   | R1605 300 80                       | 50                                                             | 0.60       |
| 45   | R1605 400 80                       | 38                                                             | 1.00       |

# General mounting instructions

The following notes relating to mounting apply to all Ball Rail Systems. Please also observe the notes in the assembly instructions. They can be downloaded from the Rexroth media directory.

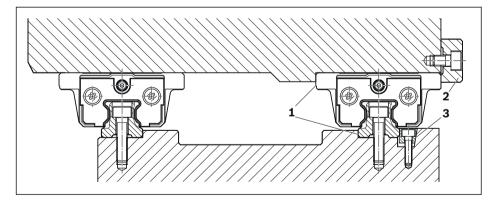
- ▲ In the case of overhead installation (hanging installation) or vertical installation, the Ball Runner Block can release from the Ball Guide Rail due to the balls being lost or broken. Secure the Ball Runner Block from falling! We recommend protection against falling loads!
- A Rexroth Ball Rail Systems are high-quality products. Use with extreme care during transport and mounting.
- All steel parts are protected with anti-corrosion oil. These preservatives do not have to be removed as long as the recommended lubricants are used.

#### Installation examples

#### **Ball Guide Rails**

Each Ball Guide Rail has ground reference surfaces on both sides.

#### **Ball Runner Blocks**


Each Ball Runner Block has a ground reference edge on one side (see dimension  $V_1$  in the dimension drawings).

Possibilities for side fixing:

- 1 Reference edges
- 2 Clamping strips
- 3 Locating pins

Mounting with fixing of both Ball Guide Rails and both Ball Runner Blocks

### Mounting with fixing of one Ball Guide Rail and one Ball Runner Block



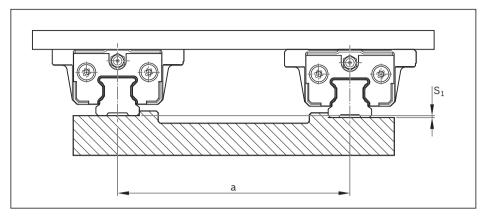
#### Notes

- ► Before installing the components, clean and degrease all mounting surfaces.
- ▶ Please ask for the "Mounting Instructions for Ball Rail Systems".
- ► After mounting, it should be possible to move the Ball Runner Block easily.
- Ball Guide Rails without side fixing have to be aligned straight and parallel when mounting, preferably using a straightedge.
- Recommended limits for side load if no additional lateral retention is provided; see the chapter entitled "Mounting".

### Bosch Rexroth AG, R999001214 (2017-10)

# Installation tolerances

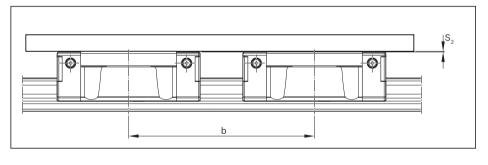
# Vertical offset


If you comply with the permissible vertical offset  $S_1$  and  $S_2$ , the effect on the service life is, in general, negligible.

# Permissible vertical offset in the transverse direction S<sub>1</sub>

The tolerance for dimension H is to be deducted from the permissible vertical offset  $S_1$  of the Ball Guide Rails according to the table containing the accuracy classes in the "General product description" chapter. If  $S_1 < 0$  applies, select other tolerances in the event of a combination of accuracy classes. See chapter "Accuracy classes".

# Permissible vertical offset in the longitudinal direction S<sub>2</sub>


You must deduct from the permissible vertical offset  $S_2$  of the Ball Runner Blocks the "Max. difference of dimension H on one rail" tolerance according to the table containing the accuracy classes in the "General product description" chapter. You must deduct the "Max. difference of dimension  $\Delta H$ on one rail" tolerance from the permissible vertical offset S<sub>2</sub> of the Ball Runner Blocks according to the table with the accuracy classes in the "General product description" chapter. If  $S_2 < 0$  applies, select other tolerances in the event of a combination of accuracy classes. See chapter "Accuracy classes".



#### **Calculation factor Y for preload class**

| .                    | C1                     | C0                     |
|----------------------|------------------------|------------------------|
| 1.7 · 10 <sup></sup> | 2.8 · 10 <sup>-4</sup> | 4.3 · 10 <sup>-4</sup> |





| Calculation factor X for Ball Runner Block length |                        |  |  |  |  |
|---------------------------------------------------|------------------------|--|--|--|--|
| Normal                                            | Long                   |  |  |  |  |
| 4.3 · 10 <sup>-5</sup>                            | 3.0 · 10 <sup>-5</sup> |  |  |  |  |

 $S_2 = b \cdot X$ 

#### Key

- S<sub>1</sub> = permissible vertical offset of the Ball Guide Rails
- a = distance between Ball Guide Rails
- Y = calculation factor, transverse direction
- S<sub>2</sub> = permissible vertical offset of the Ball Runner Blocks
- b = distance between Ball Runner Blocks
- X = calculation factor, longitudinal direction

#### **Preload classes**

- C0 = Without preload (clearance)
- C1 = Moderate preload
- C2 = Average preload

(mm)

(mm)

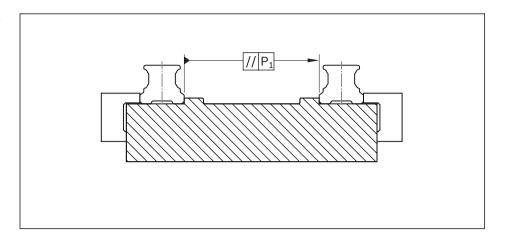
(mm)

(mm)

(-)

(-)

# Installation Tolerances


#### Parallelism offset of the installed rails

#### Values measured on the Ball Guide Rails and the Ball Runner Blocks

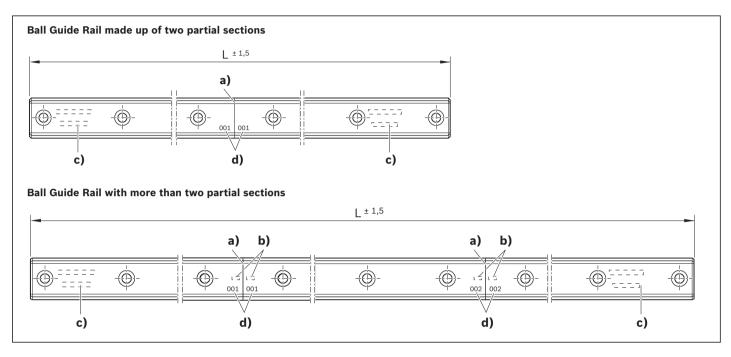
The values for the parallelism offset P1 apply to the entire standard range of Ball Runner Blocks. The parallelism offset  $P_1$  causes a slight rise in the preload. If you comply with the table values, the effect on the service life is, in general, negligible.

#### **Preload classes**

C0 = Without preload (clearance) C1 = Moderate preload C2 = Average preload



|                                      | Size |       | Parallelism offset P1 (mm)<br>with preload class |       |  |  |  |
|--------------------------------------|------|-------|--------------------------------------------------|-------|--|--|--|
|                                      |      | C0    | C1                                               | C2    |  |  |  |
| Ball Runner Blocks                   | 15   | 0.015 | 0.009                                            | 0.005 |  |  |  |
| made of steel with                   | 20   | 0.018 | 0.011                                            | 0.006 |  |  |  |
| precision installation <sup>1)</sup> | 25   | 0.019 | 0.012                                            | 0.007 |  |  |  |
|                                      | 30   | 0.021 | 0.014                                            | 0.009 |  |  |  |
|                                      | 35   | 0.023 | 0.015                                            | 0.010 |  |  |  |
|                                      | 45   | 0.028 | 0.019                                            | 0.012 |  |  |  |


**1)** The precision installation is a rigid, high-precision surrounding structure.

With standard installation, the surrounding structure is of flexible design and it is possible to work with **double** the tolerance values of the parallelism offset.

# Composite Ball Guide Rails

### Notes on Ball Guide Rails

- Matching partial sections of a composite Ball Guide Rail are identified as such by a label on the packaging. All partial sections of the same rail have the same serial rail number.
- ▶ The numbering is marked on the top of the Ball Guide Rail.



L = Rail length

length

n<sub>B</sub> = Number of holes

a) Joint

**b)** Rail number

c) Full rail identification on first and last sections

d) Joint identification number

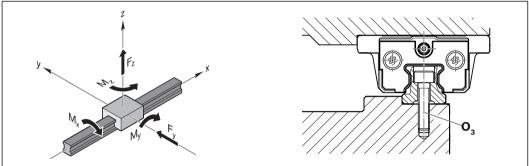
#### Note on adjacent structures

Acceptable mounting hole tolerances for adjacent structures

(mm)

(-)

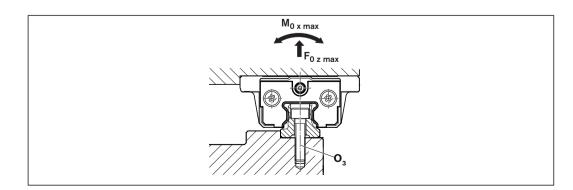
| Size    | Hole position tolerance (mm) |       |  |  |
|---------|------------------------------|-------|--|--|
| 15 - 35 |                              | Ø 0.2 |  |  |
| 45      |                              | Ø 0.3 |  |  |


# Mounting

### Notes on the calculation of screw connections

In the bolt calculation, the maximum static tensile forces  $F_{0 \ z \ max}$ , the maximum static torsional moments  $M_{0 \ x \ max}$  and the maximum static lateral forces  $F_{0 \ y \ max}$  without stop bars were determined. The decisive factor is the mounting of the rails from above  $(O_3)$ . The values for the strength class 8.8 are from DIN 637 (August 2013): Ball bearings – safety regulations for dimensioning and operation of Profiled Rail Systems with recirculating rolling elements. The calculation of the screw connections for strength classes 10.9 and 12.9 was based on the dimensions listed in the catalog (screw sizes, clamping lengths, screw-in depths, hole diameters). Deviant screw connections are to be recalculated according to VDI 2230.

Friction coefficient in the calculation:


| u <sub>G</sub> = 0.125 |
|------------------------|
| u <sub>K</sub> = 0.125 |
| u <sub>T</sub> = 0.125 |
| ł                      |



### Maximum static traction forces and torsional moments on Profiled Rail Systems (according to DIN 637)

The maximum load on a Profiled Rail System is defined not only by the static load-bearing capacity  $C_0$  in accordance with ISO 14728-2 and the static moments  $M_{t0}$  from the rolling contact, but also by the screw connections. BSCL Ball Runner Blocks are fastened with four screws. Ball Guide Rails have a regularly spaced single-row threaded connection. If the BSCL Ball Runner Block is positioned exactly over a rail screw, this screw will absorb the largest portion of the load. For this reason, the load-bearing capacity is primarily dependent on the length of the BSCL Ball Runner Block, the rail hole spacing, the screw size and the width of the rail contact surface. Slipping or mismatches on exceeding a maximum load limit is primarily defined by the screw fastening of the rail.

The tables show the permitted static tensile forces  $F_{0 z max}$  and torsional moments  $M_{0 x ma}$  around the guide axis for Profiled Rail Systems in different versions for screw tightening torques of the strength class 8.8 (according to DIN 637) and the strength classes 10.9 and 12.9 (calculated with the dimensions of the Rexroth Ball Rail System BSCL).



300

970

21,100

52,400

340

1,100

#### Ball Rail Systems BSCL

35

45

| Size             | Normal length (FNS, SNS, S | inh)                      | Long (FLS, SLS, SLH)     |                           |  |
|------------------|----------------------------|---------------------------|--------------------------|---------------------------|--|
|                  | F <sub>0 z max</sub> (N)   | M <sub>0 x max</sub> (Nm) | F <sub>0 z max</sub> (N) | M <sub>0 x max</sub> (Nm) |  |
| Strength class 8 | .8 (according to DIN 637)  |                           |                          |                           |  |
| 15               |                            |                           |                          |                           |  |
| 15               | 3,700                      | 26                        | 4,200                    | 30                        |  |
| 20               | 6,400                      |                           | ,                        |                           |  |
|                  |                            | 60                        | 7,300                    | 68                        |  |

#### Strength class 10.9 (calculated with the dimensions of the Rexroth Ball Rail Systems BSCL)

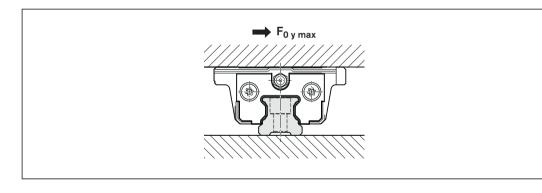
18,500

45,900

| 15 | 6,270  | 42    | 7,170  | 48    |
|----|--------|-------|--------|-------|
| 20 | 10,800 | 99    | 12,300 | 110   |
| 25 | 15,500 | 160   | 17,700 | 180   |
| 30 | 28,700 | 370   | 32,800 | 420   |
| 35 | 28,700 | 450   | 32,800 | 510   |
| 45 | 69,700 | 1,480 | 79,600 | 1,700 |

#### Strength class 12.9 (calculated with the dimensions of the Rexroth Ball Rail Systems BSCL)

| 15 | 7,570  | 51    | 8650   | 58    |
|----|--------|-------|--------|-------|
| 20 | 12,900 | 120   | 14,800 | 140   |
| 25 | 18,500 | 190   | 21,200 | 220   |
| 30 | 34,100 | 440   | 39,000 | 500   |
| 35 | 34,100 | 530   | 39,000 | 600   |
| 45 | 82,400 | 1,760 | 94,200 | 2,010 |


# Mounting

### Maximum static side load without stop strips (according to DIN 637)

For safe structural design the application includes the usage of stop strips on Runner Block and rail. If stop strips are not used on the Runner Block or the rail, then if a load is applied in the transverse direction the guideway may slip as soon as the side loads in the table are exceeded. The indicated maximum static lateral loads

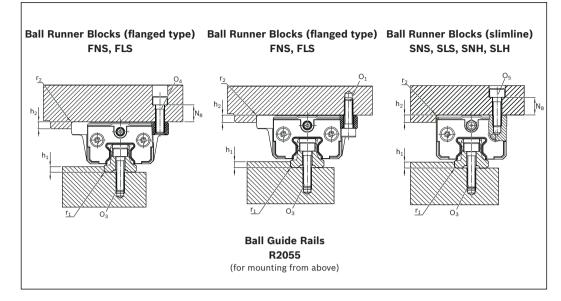
 $F_{0yma}$  apply for screws of strength class 8.8 (according to DIN 637) and for screws of strength class 10.9 and 12.9 (calculated with the dimensions of the Rexroth Ball Rail System BSCL) and an adjacent construction made of steel or cast iron.

| Ball R | ail Systems BSC                          | CL                         |                                          |                            |                                          |                            |  |  |  |  |
|--------|------------------------------------------|----------------------------|------------------------------------------|----------------------------|------------------------------------------|----------------------------|--|--|--|--|
|        | Strength class                           | Strength class             |                                          |                            |                                          |                            |  |  |  |  |
|        | 8.8                                      |                            | 10.9                                     |                            | 12.9                                     |                            |  |  |  |  |
| Size   | Standard<br>length<br>(FNS, SNS,<br>SNH) | Long<br>(FLS, SLS,<br>SLH) | Standard<br>length<br>(FNS, SNS,<br>SNH) | Long<br>(FLS, SLS,<br>SLH) | Standard<br>length<br>(FNS, SNS,<br>SNH) | Long<br>(FLS, SLS,<br>SLH) |  |  |  |  |
|        | F <sub>0 y max</sub> (N)                 | F <sub>0 y max</sub> (N)   | F <sub>0 y max</sub> (N)                 | F <sub>0 y max</sub> (N)   | F <sub>0 y max</sub> (N)                 | F <sub>0 y max</sub> (N)   |  |  |  |  |
| 15     | 280                                      | 320                        | 460                                      | 520                        | 550                                      | 630                        |  |  |  |  |
| 20     | 480                                      | 550                        | 780                                      | 890                        | 930                                      | 1,060                      |  |  |  |  |
| 25     | 710                                      | 810                        | 1,110                                    | 1,270                      | 1,330                                    | 1,520                      |  |  |  |  |
| 30     | 1,400                                    | 1,600                      | 2,110                                    | 2,410                      | 2,500                                    | 2,860                      |  |  |  |  |
| 35     | 1,400                                    | 1,600                      | 2,120                                    | 2,420                      | 2,520                                    | 2,880                      |  |  |  |  |
| 45     | 3,400                                    | 3,900                      | 5,030                                    | 5,750                      | 5,950                                    | 6.800                      |  |  |  |  |



### Tightening torques for Profiled Rail Systems (according to DIN 637)

The tightening torques for screw strength class 8.8 correspond to DIN 637. The tightening torques for the screw strength classes 10.9 and 12.9 were calculated for the dimensions of the Rexroth Ball Rail System BSCL.


|     | Tightening torques N | Tightening torques M <sub>A</sub> (Nm) for strength class |       |       |  |  |
|-----|----------------------|-----------------------------------------------------------|-------|-------|--|--|
|     | 8.8                  | 10.9                                                      |       | 12.9  |  |  |
| M4  |                      | 3.0                                                       | 4.4   | 5.2   |  |  |
| M5  |                      | 6.0                                                       | 8.9   | 10.0  |  |  |
| M6  | 1                    | 0.0                                                       | 15.0  | 17.0  |  |  |
| M8  | 2                    | 5.0                                                       | 36.0  | 43.0  |  |  |
| M10 | 4                    | 9.0                                                       | 71.0  | 83.0  |  |  |
| M12 | 8                    | 3.0                                                       | 120.0 | 140.0 |  |  |

# Mounting

# Examples of combinations

The combinations shown here are examples. Basically, any Ball Runner Block may be combined with any of the Ball Guide Rail types offered.

### Ball Guide Rail with Ball Runner Block



| Dimensions (mm)    |                                                                                |                                                                                                                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                    |                                                                                                    |
|--------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| h <sub>1 min</sub> | h <sub>1 max</sub>                                                             | h <sub>2</sub>                                                                                                                                                                        | N <sub>8</sub>                                                                                                                                                                                            | r <sub>1 max</sub>                                                                                                                                                                                                                                                                                 | r <sub>2 max</sub>                                                                                 |
| 2.5                | 3.5                                                                            | 4                                                                                                                                                                                     | 6                                                                                                                                                                                                         | 0.4                                                                                                                                                                                                                                                                                                | 0.6                                                                                                |
| 2.5                | 4.0                                                                            | 5                                                                                                                                                                                     | 9                                                                                                                                                                                                         | 0.6                                                                                                                                                                                                                                                                                                | 0.6                                                                                                |
| 3.0                | 5.0                                                                            | 5                                                                                                                                                                                     | 10                                                                                                                                                                                                        | 0.8                                                                                                                                                                                                                                                                                                | 0.8                                                                                                |
| 3.0                | 5.0                                                                            | 6                                                                                                                                                                                     | 10                                                                                                                                                                                                        | 0.8                                                                                                                                                                                                                                                                                                | 0.8                                                                                                |
| 3.5                | 6.0                                                                            | 6                                                                                                                                                                                     | 13                                                                                                                                                                                                        | 0.8                                                                                                                                                                                                                                                                                                | 0.8                                                                                                |
| 4.5                | 8.0                                                                            | 8                                                                                                                                                                                     | 14                                                                                                                                                                                                        | 0.8                                                                                                                                                                                                                                                                                                | 0.8                                                                                                |
|                    | h <sub>1 min</sub> 2.5           2.5           3.0           3.0           3.5 | $\begin{tabular}{ c c c c c } \hline h_{1min} & h_{1max} \\ \hline 2.5 & 3.5 \\ \hline 2.5 & 4.0 \\ \hline 3.0 & 5.0 \\ \hline 3.0 & 5.0 \\ \hline 3.5 & 6.0 \\ \hline \end{tabular}$ | $h_{1 min}$ $h_{1 max}$ $h_{2}$ 2.5         3.5         4           2.5         4.0         5           3.0         5.0         5           3.0         5.0         6           3.5         6.0         6 | h <sub>1 min</sub> h <sub>1 max</sub> h <sub>2</sub> N <sub>8</sub> 2.5         3.5         4         6           2.5         4.0         5         9           3.0         5.0         5         10           3.0         5.0         6         10           3.5         6.0         6         13 | $h_{1 min}$ $h_{2}$ $N_{8}$ $r_{1 max}$ 2.53.5460.42.54.0590.63.05.05100.83.05.06100.83.56.06130.8 |

| Size | Screw sizes                         |                                     |                                     |                            |  |
|------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------------|--|
|      | Ball Runner Blocks                  |                                     | Ball                                | Ball Guide Rail            |  |
|      | O <sub>1</sub><br>ISO 4762<br>4 pc. | O <sub>4</sub><br>ISO 4762<br>4 pc. | O <sub>5</sub><br>ISO 4762<br>4 pc. | 0 <sub>3</sub><br>ISO 4762 |  |
| 15   | M4x12                               | M5x12                               | M4x12                               | M4x20                      |  |
| 20   | M5x16                               | M6x16                               | M5x16                               | M5x25                      |  |
| 25   | M6x20                               | M8x20                               | M6x18                               | M6x30                      |  |
| 30   | M8x25                               | M10x20                              | M8x20                               | M8x30                      |  |
| 35   | M8x25                               | M10x25                              | M8x25                               | M8x35                      |  |
| 45   | M10x30                              | M12x30                              | M10x30                              | M12x45                     |  |

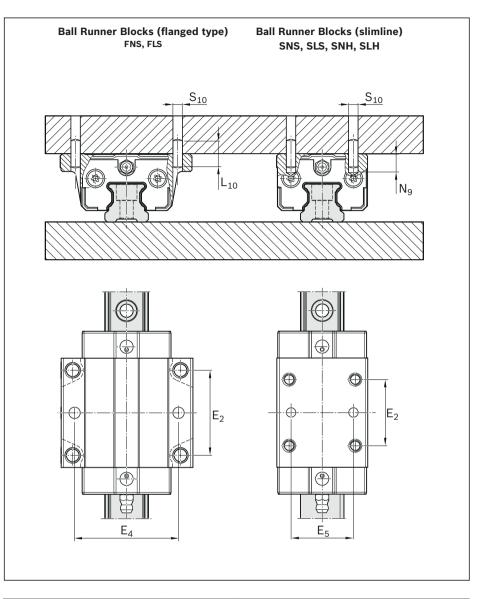
### **Mounting screws**

Always check the strength factor of the screws in the case of high lift-off loads!

> For more information on this topic, see the "General mounting instructions" section.

### Locating pins

▲ If the guideline values for the permissible lateral force are exceeded (see the corresponding Ball Runner Blocks), you must fix them additionally by pinning.


For the recommended dimensions for pin holes, refer to the dimension drawing and the dimensions.

#### Possible pin types

- Tapered pin (hardened) or
- Straight pin DIN ISO 8734

### Note

- At the recommended positions for pin holes, there may be pre-drilled holes in the middle of the Ball Runner Block due to productionrelated issues (Ø < S<sub>10</sub>). They are suitable for drilling out.
- If is necessary to carry out pinning at a different position (e.g. the middle lube fitting), dimension E<sub>2</sub> must not be exceeded in the longitudinal direction (for dimension E<sub>2</sub>, refer to the dimension tables of the corresponding Ball Runner Blocks). Comply with dimensions E<sub>4</sub> and E<sub>5</sub>!
- Do not complete the pin holes until after mounting.
- Please request the "Mounting Instructions for Profiled Rail Systems".



| Size | Dimensions (mm) |                       |                               |                    |                               |
|------|-----------------|-----------------------|-------------------------------|--------------------|-------------------------------|
|      | E <sub>4</sub>  | <b>E</b> <sub>5</sub> | L <sub>10</sub> <sup>1)</sup> | N <sub>9 max</sub> | S <sub>10</sub> <sup>1)</sup> |
| 15   | 38              | 26                    | 18                            | 6.0                | 4                             |
| 20   | 53              | 32                    | 24                            | 7.5                | 5                             |
| 25   | 55              | 35                    | 32                            | 9.0                | 6                             |
| 30   | 70              | 40                    | 36                            | 12.0               | 8                             |
| 35   | 80              | 50                    | 40                            | 13.0               | 8                             |
| 45   | 98              | 60                    | 50                            | 18.0               | 10                            |

1) Tapered pin (hardened) or straight pin (DIN ISO 8734)

# Notes on lubrication

The service life of the Ball Rail System crucially depends on the lubrication. For this purpose, the documentation, especially the chapter on lubrication, must be read and understood completely.

The operator is responsible for the selection and adequate supply of an appropriate lubricant to the Ball Rail System. These instructions do not exempt the operator from the individual examination of the conformity and suitability of the lubricant for its application.

• To safeguard the supply of lubricant the lube fittings from the chapter "Accessories" must be used. When using other lube fittings it must be ensured that they are identical to Rexroth lube fittings.

#### Lubricants

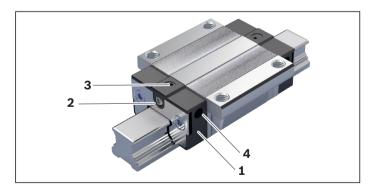
(see chapter "Lubricants")

- ► Grease (NLGI 02)
- Liquid grease (NLGI 00)
- Oil (ISO VG 220)

#### **Connecting elements**

(See the chapter on "Accessories for Ball Runner Blocks")

- Lube nipple
- Straight connectors
- Pipe fittings
- O-rings, lubrication adapters (lube fitting above)


#### Injection

- Manually (grease gun)
- Progressive lubrication system
- Single-line piston distributor systems
- Lubrication with Front Lube Unit

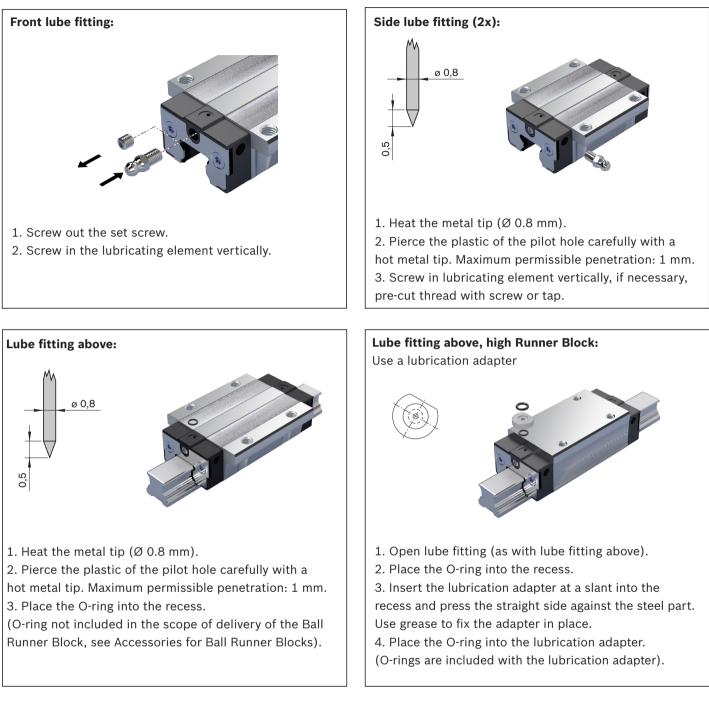
#### Lubrication quantities, intervals, instructions

- Initial lubrication and relubrication (see the "Initial lubrication and relubrication" chapter)
- Relubrication intervals (see the "Relubrication intervals" chapter)
- Minimum dosing amount (see the "Minimum dosing amount" chapter)
- Lubrication cycle configuration (see the "Lubrication with one-point lubrication systems" chapter)

# Lube fittings



BSCL Ball Runner Blocks feature four connection possibilities per end cap, through which a lubricant can be applied. Via the integrated channels in the end caps, the lubricant is evenly distributed among the four ball track turns.


- 1) End caps (2x)
- 2) Front lube fitting
- 3) Lube fitting above
- 4) Side lube fitting (2x per end cap)

## Lube fitting selection

### For standard stroke (stroke > 2 x Ball Runner Block length B<sub>1</sub>)

Lubrication at one of the two end caps is sufficient. For a vertical or sloping installation position, lubrication must be done via the higher-lying end cap using liquid grease or oil. For short stroke (stroke < 2 x Ball Runner Block length B<sub>1</sub>) Lubrication via both end caps is required.

# Starting up lube fittings



### Notes:

- $\blacktriangleright$  Alternatively, it is possible to open the side and top lube fittings with a 0.8 or 1.0 mm Ø twist drill.
- Pay attention to the maximum drilling depth of 1 mm. Make sure that no shavings enter into the lubrication channel.
- ▶ Only one lube fitting may be used for each end cap.
- ▶ Maximum lube pressure 30 bar, press slowly when lubricating with hand-operated grease gun.
- ▶ For a selection of possible lubrication elements, see the "Accessories for Ball Runner Blocks" chapter.
- You can also get in touch with the manufacturer of the lubrication system.

# Lubricants

### BSCL Ball Runner Blocks can be lubricated with grease, liquid grease or oil:

|                         | Grease (NLGI 2)                   | Liquid grease (NLGI 00)              | Oil (ISO VG 220)                  |
|-------------------------|-----------------------------------|--------------------------------------|-----------------------------------|
| Injection               | ▶Grease gun                       | ►Single-line piston distributor      | ►Single-line piston distributor   |
|                         | ▶ Progressive lubrication system  | systems                              | systems                           |
|                         |                                   | ► Progressive lubrication system     | ▶ Progressive lubrication system  |
| Recommendation          | Dynalub 510                       | Dynalub 520                          | Shell Tonna S3 M 220              |
|                         | ►NLGI grade 2 lithium-based       | ►Lithium-based, high-performance     | ►► Demulsifying special oil for   |
|                         | high-performance grease according | grease                               | bed tracks and machine tool       |
|                         | to DIN 51818 (KP2K-20 according   | NLGI grade 00 according to DIN 51818 | Guide Rails,                      |
|                         | to DIN 51825)                     | (GP00K-20 according to DIN 51826)    | (CLP according to DIN 51517-3,    |
|                         | ►Good water resistance            | ►Good water resistance               | VG 220 according to ISO 3448)     |
|                         | ►Corrosion protection             | ►Corrosion protection                | ►A blend of highly refined minera |
|                         | ►Temperature range:               | ►Temperature range:                  | oils and additives                |
|                         | -20 to +80 °C                     | -20 to +80 °C                        | ►Can be used even when mixed      |
|                         |                                   |                                      | with significant quantities of    |
|                         |                                   |                                      | metalworking fluids               |
| Approved                | ►Castrol Longtime PD2             | ►Castrol Longtime PD00               | ►Mobil Vactra Oil No. 4           |
| alternative<br>products | ►Elkalub GLS 135/N2               | ►Elkalub GLS 135/N00                 |                                   |

Table 1

A If you use different lubricants from the ones stated, you may find that relubrication intervals are shorter and that performance decreases with short stroke and load ratio; in addition, chemical interactions can take place between the plastics, lubricants and the preservative agents. In addition, pumpability in single-line one-point lubrication systems must be guaranteed.

AYou must not use lubricants containing solid lubricating components (like graphite and MoS<sub>2</sub>for example)!

▶ Please consult us if the application involves special environmental requirements (such as clean room, vacuum, food industry applications, increased exposure to fluids or aggressive media, extreme temperatures). Each application must be considered on its own merits in order to chose the most appropriate lubricant. Be sure to have all the information concerning your application at hand when contacting us.

Pay attention to the chapter "Maintenance".

# Initial lubrication and relubrication

The following procedure is valid regardless of the type of lubricant injection method used.

For lubrication with one-point lubrication systems, additional notes and the configuration of the lubrication cycle is described in the chapter entitled "Lubrication with one-point lubrication systems". For each application of lubricant, pay attention to the minimum dosage from Table 3.

A Never put Ball Runner Blocks into operation without basic lubrication. No initial lubrication is required if pre-lubricated at the factory. Rexroth Ball Rail Systems are supplied with preservation.

### Initial lubrication:

A BSCL Ball Runner Blocks have initial lubrication by default. Initial lubrication (basic lubrication) is merely necessary for non-lubricated Runner Blocks (material number R205X XXX 24).

A The seals on the Ball Runner Block must be oiled or greased with the respective lubricant before being slid onto the Guide Rail.

- 1. Apply lubricant quantities in accordance with Table 2, for short stroke, apply in both end caps
- 2. Move the Ball Runner Block back and forth with three double strokes, stroke length > 3 x Runner Block length
- 3. Repeat steps 1 and 2 (lubrication with oil: repeat 1 x)
- 4. Check whether you can see a film of grease on the rail

### **Relubrication:**

▶ When the re-lubrication interval as described in the chapter entitled "Relubrication" has been reached, then re-lubrication is necessary.

A In the case of relubrication, it is not possible to change from grease to oil lubrication.

A In the case of environmental influences such as contamination, high temperatures, vibration, impact load, etc., we recommend shortening the relubrication intervals.

• Even under normal operating conditions, the system must be relubricated after two years at the latest due to aging of the grease.

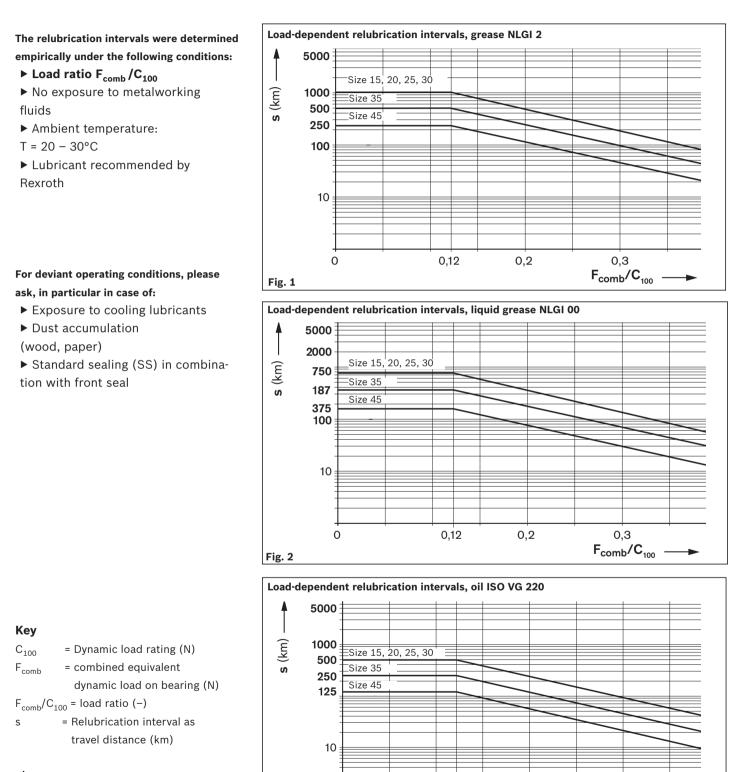
A For lubrication via one-point lubrication systems, the lubrication cycle is determined according to the chapter "Lubrication with one-point lubrication systems".

1. Apply lubricant quantities in accordance with Table 2, for short stroke, apply in both end caps.

2. Move the Ball Runner Block back and forth with three double strokes, stroke length > 3 x Runner Block length

### Lubrication quantities

| Size | Initial lubrication (cm <sup>3</sup> ) <sup>1)</sup> |                  | Relubrication (cm <sup>3</sup> )         | elubrication (cm <sup>3</sup> ) |  |
|------|------------------------------------------------------|------------------|------------------------------------------|---------------------------------|--|
|      | Grease (NLGI2)<br>Liquid grease (NLGI00)             | Oil (ISO VG 220) | Grease (NLGI2)<br>Liquid grease (NLGI00) | Oil (ISO VG 220)                |  |
| 15   | 0.4 (3x)                                             | 0.6 (2x)         | 0.4 (2x)                                 | 0.6                             |  |
| 20   | 0.7 (3x)                                             | 1.0 (2x)         | 0.7 (2x)                                 | 1.0                             |  |
| 25   | 1.4 (3x)                                             | 1.5 (2x)         | 1.4 (2x)                                 | 1.5                             |  |
| 30   | 2.2 (3x)                                             | 1.6 (2x)         | 2.2 (2x)                                 | 1.6                             |  |
| 35   | 2.2 (3x)                                             | 1.8 (2x)         | 2.2 (2x)                                 | 1.8                             |  |
| 45   | 4.7 (3x)                                             | 3.0 (2x)         | 5.7 (2x)                                 | 3.0                             |  |


Table 2

1) A No initial lubrication is required for Runner Blocks with initial greasing (R205X XXX 20).

A Pay attention to the notes on lubrication!

# Relubrication intervals

The relubrication of Ball Rail Systems is load dependent. With the load ratio  $F_{comb}/C_{100}$ , the relubrication interval can be determined according to the diagrams (Fig. 1-3). After this distance has been traveled, the Ball Runner Block is to be relubricated (see the "Initial lubrication and relubrication" chapter).



0,12

0

Fig. 3

0,2

0,3

F<sub>comb</sub>/C<sub>100</sub>

A Pay attention to the notes on lubrication!

# Minimum amount, minimum piston distributor size

To ensure a uniform lubricant distribution in the Ball Runner Block, a minimum amount of lubricant as per Table 3 must be applied during each lubrication session. This is mainly relevant for automatic lubrication via single-line piston distributor<sup>1)</sup> or progressive lubrication<sup>2)</sup> systems. Applies to all installation positions. For short stroke, the amount per end cap indicated is valid.

| Size | Grease (NLGI2) / liquid grease (NLGI00) (cm <sup>3</sup> ) | Oil (ISO VG 220) (cm <sup>3</sup> ) |
|------|------------------------------------------------------------|-------------------------------------|
| 15   | 0.3                                                        | 0.4                                 |
| 20   | 0.3                                                        | 0.6                                 |
| 25   | 0.3                                                        | 0.6                                 |
| 30   | 0.3                                                        | 0.6                                 |
| 35   | 0.3                                                        | 0.6                                 |
| 45   | 0.3                                                        | 1.0                                 |

Table 3

1) Liquid grease, oil

2) Grease, liquid grease, oil

# Lubrication with one-point lubrication systems

#### There are two possibilities for supplying Ball Runner Blocks with a one-point lubrication system:

► Lubrication with progressive lubrication system (grease, liquid grease, oil)

► Lubrication with single-line piston distributor systems (liquid grease, oil)

#### The following procedure applies when configuring the lubrication cycle for one-point lubrication systems:

| Step                                                                                              | Calculation process                                                                                                                     | <b>Example:</b><br>Ball Runner Block BSCL size 25 FNS<br>Lubrication with single-line total loss<br>lubrication system via piston distributor<br>Oil (ISO VG 220)<br>Load F <sub>comb</sub> = 6.540 N           |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Determining the amount of lubricant                                                            | Table 2, chapter "Initial lubrication and relubrication"                                                                                | Amount of lubricant size 25, oil: 1.5 cm <sup>3</sup>                                                                                                                                                           |
| 2. Determining the minimum piston distributor size/minimum dosage                                 | Table 3, chapter "Minimum amount, minimum piston distributor size"                                                                      | Minimum amount of lubricant size 25, oil:<br>0.6 cm <sup>3</sup><br>► Selected piston distributor: 0.6 cm <sup>3</sup>                                                                                          |
| 3. Calculating the lubrication pulse rate<br>for the application of the relubrication<br>quantity | Pulse count n =<br>Volume per lubrication pulse (cm <sup>3</sup> )<br>Round up to next whole digit                                      | $n = \frac{1.5 \text{ cm}^3}{0.6 \text{ cm}^3} = 2.5$ For relubrication to inject the proper amount 3 lubrication pulses are needed.                                                                            |
| 4. Determining the relubrication<br>interval from the chapter "Relubrication<br>intervals"        | Load ratio L = $\frac{\text{Dyn. equivalent bearing load (N)}}{\text{Dyn. load capacity (N)}}$<br>L = $\frac{F_{\text{comb}}}{C_{100}}$ | Load ratio L = $\frac{6,540 \text{ N}}{21,800 \text{ N}}$ ≈ 0.30<br>Relubrication interval: 90 km (Fig. 3)<br>For relubrication purposes, 1.5 cm <sup>3</sup> of<br>lubricant must be injected after 90 km.     |
| 5. Calculating the lubrication cycle                                                              | Lube cycle =<br>Number of pulses                                                                                                        | Lubrication cycle = $\frac{90 \text{ km}}{3}$ = 30 km<br>Per Ball Runner Block (for short stroke<br>per end cap) at least 0.6 cm <sup>3</sup> of lubricant<br>oil must be supplied after no more than<br>30 km. |

#### Notes:

We recommend carrying out initial lubrication manually before connecting to the one-point lubrication system.
 All lines and elements must be filled with lubricant to the connection to the Ball Runner Blocks and must not contain air pockets.

A Pumping or storage tanks for the lubricant should be fitted with a stirrer or follower piston to guarantee the flow (to avoid funneling in the tank).

A When applying lubricant at the start or after a relatively long standstill, carry out 2 to 5 lubrication pulses in succession. When the system is in operation, 3 to 4 pulses per hour are recommended, irrespective of the distance traveled. If possible, carry out lubrication in one lubricating stroke. Carry out cleaning cycles (see "Maintenance"). The user alone is responsible for selecting suitable metalworking fluids. An unfavorable selection of coolant/lubricant may lead to damage to the Ball Rail System. We recommend getting in touch with the manufacturer of the coolant/ lubricant. Bosch Rexroth accepts no liability.

Lubricant and metalworking fluids must be coordinated.

▶ Rexroth recommends piston distributors manufactured by SKF. These should be installed as close as possible to the lube fittings of the Ball Runner Blocks. Long lines and small line diameters should be avoided, and the lines should be laid on an upward slant. Install the lines at a gradient.

► If other consumers are connected to the one-point lubrication system, the weakest link in the chain will determine the lubrication cycle time.

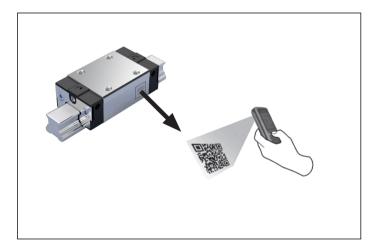
# Maintenance

| Cleaning cycle | Dirt can settle and encrust on Ball Guide Rails, especially when these are not enclosed.<br>To ensure that seals and wipers retain their functionality, this dirt must be removed at<br>regular intervals. It is advisable to perform at least one full cleaning cycle over the entire<br>installed rail length every eight hours. In case of contamination or the use of a cooling<br>lubricant, a shorter interval is recommended. |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                | Before shutting down the machine, always perform a few lubricating pulses or lubricating strokes one after another. The lubrication pulses should take place over the maximum possible travel distance (cleaning cycle) while the axis is motion.                                                                                                                                                                                    |  |
| Maintenance    | All elements used for scraping or wiping the Ball Guide Rails must be cleaned and<br>lubricated at regular intervals.<br>We recommend annual maintenance.                                                                                                                                                                                                                                                                            |  |

# Further information

You can find extensive information here on products as well as training and service offers.

#### **Product information:**


www.boschrexroth.com/linear-motion-technology





# Advanced product information on the Ball Rail System BSCL using the QR code:

In addition to the material number, a QR code can also be found on the BSCL Runner Block. This leads to further product descriptions and enables the user to call up extensive information on the product. This includes the instructions and the catalog, which contains all technical information. A connection to the eShop, the short product name for the Runner Block as well as the production plant and the production date are in preparation.



## **Contact** https://addresses.boschrexroth.com/DE/en\_US





#### Training:

http://www.boschrexroth.com/training





#### Service:

http://www.boschrexroth.com/service







**Bosch Rexroth AG** 

Ernst-Sachs-Straße 100 97424 Schweinfurt, Germany Tel. +49 9721 937-0

www.boschrexroth.com

Find your local contact person here: www.boschrexroth.com/contact

R999001214 (2017-10)

© Bosch Rexroth AG 2017 Subject to change! The data specified above only serve to describe the product. Since our products undergo continuous further development, no statement regarding any particular quality or suitability for any particular use can be derived from this information. The information given does not release the user from the obligation of own judgment and verification. Our products are subject to natural wear and aging.